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Summary 

Examples of sonic boom noise field under wavy water are studied, based on the theory of Part I, 
to ascertain the surface-wave influence on sound level, frequency and waveform of the perceivable sonic 
boom disturbances generated during supersonic aircraft and space launch operations. The study 
substantiates that, owing to the much lower attenuation rate, the time-dependent disturbances produced by 
the interaction of incident sonic-boom waves with a sinusoidal surface-wave train can be comparable to 
and overwhelm the otherwise flat-ocean (Sawyers) wave field at large as well as at moderate depth levels, 
depending on the surface-wave number k, the Mach number above water MA, and the maximum surface-
wave slope, δ. Examples of calculations indicate that audible disturbances from aircrafts at levels of 120-
130 dB (ref. 1 µ Pa) can reach a depth of 1000-1500 ft. (300-450 m) where the waveform turn itself into a 
packet of wavelets with carrier frequency 20-40 Hz. Same dB levels are expected also at comparable 
depth (200-400 m) for the rocket space launch, but mainly in the low infrasound (1-10 Hz) range. 
Significant differences between sonic booms from supersonic aircraft and from rocket launch operations 
in noise characteristics underwater are discussed. Results are obtained for examples in which the surface-
wave vector (propagation direction) does not align with the flight track and for examples involving 
multiple surface-wave trains. As an extension in the theoretical development, the series solution for a 
non-sinusoidal, periodic surface-wave train is developed, its convergence, and its far-field behavior 
(under kz >> 1) are established. Importance of the sea-floor presence and the potential for excitation of 
sediment-interface waves are examined with the model of a shallow sea. 
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1. Introduction 

Sonic Boom is recognized as an outstanding environmental impact issue of supersonic aircraft 
and space-launch operations (Gladwin et al 1988, Stewart et al 1991, Air Force Material command 1997, 
Office Assoc. Adm. Commercial Space Transportation 2001).  Methods for predicting sonic boom 
overpressure for impact assessments have evolved from ray/geometric acoustics theory (Guiraud 1965, 
Hayes 1971, Hunter & Keller 1983) and are extensively used for impact studies in many design and 
program-planning analyses (Walden 1958, Carson & Maglieri 1972, Thomas 1972, Plotkin 1984, Darden 
1988). 

An important development receiving much attention in recent years addresses the potential sonic 
boom effects on marine mammals and other forms of sea life (Sawyers 1968, Cook 1970, Water 1971, 
Intrieri & Malcolm 1973, Sparrow 1995, Sparrow & Ferguson 1997).  Most research in this area have 
been concerned with the sound level and frequency range that may cause permanent or long-term physical 
harm to the animals, such as lowering in the hearing threshold after exposure to sonic booms (Bowles & 
Stewart 1980, Bowles 1995, Stewart et al 1991).  These works do not address, however, problems 
underlying the audibility issue which may affect the animals in short and long terms, and has been central 
to recent studies on man made noise affecting marine mammals (Richardson et al 1995, 1997; National. 
Res. Council Ocean Study Board Committee 1992; Natural Resource Defense Council 1999; ARPA, 
NOAA & State of Hawaii 1995). 

Our recent study presented in Part I (Cheng and Lee 2000, 2002) indicates significant interaction 
effects of surface waves on sonic boom noise in deep water.  According to the analysis, audible signals 
perceived in deep, as well as moderately deep, water are significantly different from, and much stronger 
than, that predicted by the flat-ocean (Sawyers’) model.  To be used as a guide for studying the audibility 
issue, prediction methods based on the theory must be critically examined with concrete examples for its 
capability in predicting overpressure levels, frequency ranges and waveforms at depth levels of relevance 
to marine mammal studies.  This will be the principal focus of the following examinations in Sections 4 & 
5, in which examples for incident N-waves at several flight Mach numbers interacting with surface wave 
trains in a certain wave-number range will be considered.  Included in the study are also examples 
modeling the underwater noise impact from a rocket space launch.  Several features of the underwater 
acoustic field are brought out and model of sediment-interface waves in a shallow sea will be studied in 
some detail.  Section 2 below delineates the interaction model and the theory in its essence, and their 
relations to other theoretical and experimental studies.  Calculation procedures and computation programs 
used will be briefly explained in Section 3; key analytical details and equations are summarized in 
Appendices I-III.  A theory extension to non-sinusoidal, periodic, surface-wave train is documented in 
Appendix IV, where an improved far-field analysis for high surface-wave number (kz >>1), more 
complete than in Part I, will also be given.  Unresolved analytical issues in sediment-wave excitation are 
noted in Appendix V. 

2. Preliminary Remarks 

2.1 Assumptions and the Interaction Model 

The theory adopts a model of two adjoining inviscid, compressible media; across the interface the 
pressure and normal velocity (in the absence of surface tension) are continuous.  The water-to-air density 
ratio Aw ρρ  is assumed to be much high than unity (being 773.4 under standard condition).  Its high 
density is expected to cause the water to behave very stiffly in response to the incident sonic boom wave, 
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with little changes in fluid velocities and the interface geometry (to the level of approximation 
considered); whereas, the overpressure underwater must vary in response to that above water. 

The overpressure of interest, to be sure, is the pressure change from the local equilibrium value 
p+ρgh which increases with depth z (Please refer to Fig. 1 for sign conventions and meanings for the 
depth and horizontal variables z and x, the sea-level signature length L΄, the surface-wave length λ, the 
horizontal velocity of the wave field trailing the space/aircraft U, and the surface-wave velocity c).  As 
shown in Fig. 1, the surface-wave depression is represented by (x, y, t); for the sinusoidal surface-
wave train considered, the maximum  (which is one-half of the wave height) is δλ, and the maximum 
slope is 2πδ.  Following the convention in Part I, all length scales will be made dimensionless in the out 
set with the signature length L΄.  The velocity U is assumed to be constant, or nearly uniform in time, and 
much larger in magnitude than c; the latter will be omitted in most applications.  Following Part I, the 
problem formulation and analyses were made in the Cartesian reference frame moving with horizontal 
velocity U with respect to the media at rest.  Whereas, the corresponding waveform study in the time 
domain (at various depths) will be made in the rest frame (fixed to the medium at rest); this will allow a 
more meaningful comparison with sound field normally perceived under water. 

wZ

wZ

The interaction theory considered assumes a small over-pressure ratio ε = ( p – pA  )/ pA together 
with a small surface slope δ , so that the interaction effect next to the surface is of the order of  ε δ  
pertaining to a second-order influence.   As a valid asymptotic theory, the main requirement is found to be 
(Cheng and Lee 2002) 

 ε ρA / ρw   << δ 

The analysis may therefore be expected to hold even if δ were comparable or smaller than ε,  as 
long as  ε  remains small. 

2.2 Essence of the Theory 

The significance of the surface-wave influence on deepwater wave field is made more apparent 
by a comparison in the (spatial) attenuation rate between the primary sonic boom disturbances under a flat 
ocean and the time-dependent disturbances generated by the interaction with a surface-wave train.  
Whereas the former diminish with increasing depth level as the inverse square of the depth, i.e. 2z1  for 
an N-like incident waveform, the time-dependent effect from the interaction with surface waves will 
attenuate, however, as the inverse square-root of the depth, i.e.1/√z in accord with the cylindrical 
spreading rule which is familiar from acoustics for a monochromatic point source in two dimensions [see 
for example, (Landau & Liftshitz 1959)].  This cylindrical spreading rule is indeed borne out by the 3-D 
theory in Part I by virtue of the high aspect ratio of the sonic boom impact zone.  Hence, this time-
dependent interaction effect, though being a secondary one at and near the surface, can exceed Sawyers’ 
prediction in magnitude and overwhelm the otherwise primary wave field at large z.  The manner in 
which the secondary effect evolves into a dominant feature in deepwater and the several of its unique 
properties are the results of analytical details worked out in Part I from the interaction model based on the 
foregoing anticipation. 

Underlying the various features of the theory are the time-dependent acoustic source produced by 
the sonic boom and surface wave interaction, that generate, in turn, a dispersive wave system with a 
continuous wave-number spectrum.   In progressing to deep water, these waves disperse into a packet of 
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quasi-monochromatic, cylindrically spreading wave-lets.  The result overwhelms the otherwise, primary 
flat-ocean wave field by virtue of their much lower attenuation rate with depth.   

Earlier theory and experiment on sound transmission from air to water (Medwin, Helbig & Hagy 
1973) have indicted that the transmitted sound level can be augmented with a rough water surface.  The 
results cannot be taken, however, as a direct support to the present work, since, unlike the model of Part I, 
theses earlier studies considered mainly sound transmission in which the wavelength is short compared to 
the signature length. 

2.3 Related Studies 

Most studies of sonic boom effects underwater are based on Sawyers’ (1968) flat-ocean model; 
among these are analytical development elucidating the original theory (Cook 1970) and experiments 
substantiating certain model predictions and properties (Water 1971, Intrieri & Malcolm 1973).  Sparrow 
(1995) and Sparrow & Ferguson (1997) applied Sawyers’ theory extensively to study effect of aircraft 
flight Mach number and incident waveform.  Their studies would suggest that sonic boom noise 
underwater cannot be important at depth levels more than a signature length. 

Whereas the present theory and its results in deep water represent a significant departure from 
Sawyers’ model in deepwater, the analysis was based on the interaction of an incident sonic boom with 
surface wave of small slopes; as noted already, the interaction effect must therefore be secondary 
compared to the prediction for a flat ocean, at least at small depth level. Thus, Sawyers’ model may be 
regarded as the departure point for the present analysis. 

Three experiments on underwater sonic boom noise of relevance to the present work may be cited 
(Intrieri & Malcolm 1973, Desharnais & Chapman 1998, Sohn et al 1999).  Intrieri & Malcolm’s 
measurements were conducted in a (Plexiglas) water tank where the overpressure below the otherwise 
free surface was produced by an overflying projectile of small caliber, using 0.56 cm diameter Quartz 
pressure transducers (Kistler model 603 A) flushed mounted on a 17 cm square aluminum plate; the latter 
was connected through waterproof (microdot) cable to an electrostatic-charge amplifier (Kistler model 
566).  The projectile Mach number ranges from 2.7 and 5.7 in air, corresponding to Mach 0.6 to 1.3 
underwater.  The water in the tank prior to projectile firing was quiescent, allowing no surface waves.  In 
the cases with subsonic Mach numbers underwater, the maximum overpressure were found to attenuate 
with depth in a manner anticipated by Sawyers’  (1968) theory, borne out by the Prandt-Glauert rule (for 
steady-state aerodynamics).  Detailed signature waveform underwater was not recorded. 

In Deshanais & Chapman’s (1998) work, acoustic signals were recorded during sea trial of a 
vertical hydro-phone array and were identified subsequently to be the transmitted disturbances from an 
overflying Concorde airliner at Mach 2.02, and 8 km above.  The array spanned the lower 50 m of the 70 
m water column above a sand bank.  Reasonably good agreement with Sawyer’s solution in waveform 
recorded was found on the upper part of the array.  Noticeable from the overpressure recorded in the 
lower part of the water column is a lee-wave like feature departing from Sawyers’ prediction.  The 
feature, referred to as ‘ringing’ for its prolong monotone character, were attributed by the authors to be 
the effect of excited sediment-interface wave.  Their numerical study addresses the seismic-acoustic 
interaction of the underwater infrasonic waves with the elastic sediment of a model sea bed, and lends 
support to the ringing effect in question.  A solution feature therein which indicate an increasing 
sediment-wave effect with distance from the sea bed is, nevertheless, difficult to explain; we will examine 
the possibility for its occurrence in a shallow water study later in Sec 4.8.  Interestingly, ringing features 
similar to that mentioned have also been found in examples of interaction of sonic boom with a surface-
wave train later in Section 4; it is unclear, however, if the surface-wave influence could provide a better 
explanation of the feature in question, since the water were reportedly clam during measurement. 
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Undersea measurement of sonic boom noise field has recently been made by Sohn et al (1999).  It 
represents a first planned ocean experiment of this kind, including several supersonic overflights together 
with shipboard overpressure measurements.  Six booms were generated by an F-4 aircraft at altitude 0.6-
6.0 km and Flight Mach number 1.07-1.26.  The recording system employed a vertical hydrophone array 
suspended from a small buoy, which telemetered data to a nearby research vessel.  The sea-level 
overpressure amplitudes were found to range in 100-2—Pa (2.1-4.2 psf), which was reduced to the 1 Pa 
(0.021 psf) level at depth 30-40 m corresponding to 1-1.5 signature length, where the signals of interest 
were reportedly indistinguishable from that of the ambient noise.  While the waveform data agreed 
reasonably well with Sawyers’ prediction at depth down to 30-40 m, large discrepancies appear in most 
records at depth greater than 50 m.  The measurement was not extended to depth beyond 70 m in the 
belief that the ambient noise level at greater depth would have overwhelmed the signals of interest. 

As a field experiment to validate Sawyers’ model, the study succeeded in demonstrating the 
model’s applicability at depth levels down to one signature length (~40 m).  In the interest of the 
audibility, however, one must recognize the important difference in the expected ambient noise levels 
between the very-shallow water (~40m) and the deep ocean, or even a shallow sea, according to the 
classic plots familiar from Wenz’s (1962) and Urick’s (1983) studies.  These plots give estimated sound 
pressure spectral densities as function of frequency, and indicates that the ambient noise level at the 
“very-shallow depths” (say 50 m or less) in the 5-30 Hz frequency range of interest is at the least 20 dB 
(re 1 µPa) higher than those in the “deep” and “shallow” (not-so-deep) water.  Ample evidence from Sohn 
et al’s data suggest that either the recording system or analyzing procedures therein became inadequate 
for depths 50 m and beyond (deeper).  The prevailing sea state reported during the tests indicate that 
ocean waves were present, though regarded as being relatively calm.  It is also unclear why the time-
domain (waveform) were not described at time interval beyond half a second which would have revealed 
the noted ringing features.  Finally, the rather limited flight-Mach number range of 1.07-1.26 in Sohn et 
al’s work represents still another limitation of the experiment, in as much as our theory in Part I 
(explained in Section 4), shows that the lateral (y-) extent of the impact zone, where the surface-wave 
influence can manifest, becomes very small as the flight Mach number fall below 1.25.  Even in the 
vertical plane directly under the flight track (y=0), the effect of interest cannot be detected for flight Mach 
number lower than 1.25, unless the surface-wave vector aligns closely with the flight track. 

3. Solution Procedures: Basic Steps, Key Issues and Features 

3.1 Solving the Direct and Inverse Problems 

Since the surface-wave slopes are assumed to be small, the interaction effect in question can be 
treated as a higher-order, nonlinear correction to the linear, flat-ocean (Sawyers) theory.  As such, the 
equations governing the wave fields above and under water of interest can be linearized in successive 
approximations, and analyzed in a reference frame moving (with respect to a rest frame) at a velocity U.  
The problem is further simplified by the high water-to-air density ratio, which allows omission of surface-
shape change in the determination of the interaction effect above water.  The solution for the perturbation 
velocity-potential above water may then be obtained as that of a direct problem in aerodynamics, in 
which the (time-dependent) boundary conditions for the normal velocity on the interface are known a 
priori (at each stage of the approximation).  With the sea-level (time-dependent) overpressure determined 
by the solution above water given as an input, the wave field underwater (at a lower Mach number) will 
be solved as an inverse problem in which boundary value of the overpressure of interest is given 
completely on the interface.  In carrying out the perturbation analysis, the boundary conditions at the 
impermeable interface will be transferred analytically to the reference surface z=0; this transfer 
contributes to an additional nonlinear, secondary correction. 
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Time-Dependent Solution as a Secondary Wave Field 

It is essential to note once again that, unlike other secondary on nonlinear effects which attenuate 
with distance rapidly (as do the primary disturbances), the surface-wave interaction effect of interest, 
owing to its much lower attenuation rate, dominates the secondary corrections and, in fact, overwhelms 
the primary wave field at a sufficiently large z. 

The acoustic wave field is therefore composed of two parts, the primary and the secondary, for 
each of the two media.  In the moving frame, the primary wave field is that corresponding to a steady, 2-
D supersonic flow ( >1) in the air (above water) and to a steady 2-D subsonic flow ( <1) under 
water (for >

AM WM

AM =w Aρρ 4.53).  Applied to a bottom-free model ocean, the latter recovers the Sawyers 
theory.  Adopting the notations of Part I, the perturbation velocity potential will be analyzed in the form 
of  

 ( ) ( tyzxyzx ,;,;, 21 ′′′′+′′′′=′ )φφφ  (3.1) 

with a similar decomposition for the overpressure p΄.  Note that x΄, y΄, and z΄ are the normalized local 
Cartesian variables with y΄ being the coordinate along either the (curved) centerline or leading edge of the 
surface impact zone (cf. Fig. 2). 

Synchronous Wave Field Mode 

An important feature of the present model is the assumption of the sinusoidal surface waveform 
described by  

 [ tykxki

tyxZz w

ωδλ −+=

=

21exp

);,(

]  (3.2a) 

in a rest frame ( )tzyx ;,, .  In the moving frame, and under the assumption that the (span wise) variation 

along the centerline is relatively small,  can be expressed as wZ

 [ ,exp 21 tykxkiZw Ω−′′+′′= δ ]λ  (3.2b) 

where 

 ( ),cos1 ψ+Λ=′ kk        ( )ψ+Λ=′ sin2 kk  (3.2c) 

 .( )cos1 cUkUkck +=+=Ω ψ  

Here, Λ is the local centerline swept angle of the surface-impact zone (cf. Fig. 2) which 
determines the normal Mach number aUM n Λ= cos  at the span station of interest, and the k  and  

are the two components of the surface-wave vector 
1′ 2k ′

k  whose magnitude is λπ2=k .  As indicated in 
Fig. 2, ψ is the angle that the surface wave-number vector made with the flight track.  At ψ=0, the 
surface-wave vector aligns itself with the flight direction; ψ may be referred to as the “angle of non-
alignment”.  Part I has shown, and the subsequent study will confirm, that there is a wide range of ψ for 
which the surface-wave influence on the deep-water acoustics is significant.  
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The contribution from c to the normalized frequency Ω in (3.2c) is generally small and will be 
omitted.  This is because the wave trains move so much slower than the sonic boom wave field that it can 
be regarded as standing still.  The assumptions of (3.21), together with the high aspect ratio of the 
surface-impact zone, allow one to treat the secondary acoustic field as one in a synchronous form, 
including a sinusoidal span wise dependence in y΄. 

After normalizing φ  and p΄ with the appropriate scales, their primary and the principal 
secondary components may then be expressed as  

′

 ( ) ( )zxyzx ,ˆ,, 21 ′+′′′=′ φδφφ yiyki ee Ω−′′2  (3.3a) 

 ( ) ( )zxpyzxpp ,ˆ;, 21 ′+′′′=′ δ tiyki ee Ω−′′2  (3.3b) 

where zMz n
2121 −= , and the dependence of φ  and on the parameter set (M, Λ, , ) or ( , k, 

Λ, ψ) is expected.  The justification for considering (x, y, z) and (x΄, y΄, z΄) as local Cartesians rests with 
the assumption of a high aspect ratio for the sonic-boom impact zone on the ground or the sea level.

ˆ p̂ 1k ′ 2k ′ nM

1 

Time-Domain Description in Rest Frame 

The time-domain waveform observed in a rest frame is of interest, since it offers a closer 
comparison with laboratory/field measurement and with signal perceived by a (slowly) swimming 
mammal/fish.  In terms of a time t (normalized by L΄/U), the synchronous wave field in the moving frame 
can be described as a transient wave group in a rest frame with the same functional forms for φ , and p΄ 
(3.3a,b), except for the replacement of the variable x΄ in 

′
( zxp ,ˆ 2 ′ )

)

 by the substitution  

  (3.4) Λ=′ costx

3.2 Supersonic Wave Field 

Leading Approximation 

Of interest are the φ  and p΄ on top of the interface (3.2b), which will provide the boundary data 
for the problem underwater.  To the leading order, the perturbation velocity potential above water, can be 
described by a form familiar from the Prandtl-Glauert theory 

′

  (3.5) ( ) ( zBxfzBxf nn −′++′=1φ

where is nB 12 −nM  and f is a continuous function of the argument with piecewise 
continuous derivatives, allowing shock-like, slope discontinuities.  It satisfies the condition on the 
impermeable flat surface z=0 where the overpressure is proportional to –2f΄΄(x).  Here, the superscript 
prime stands for a derivative. 

)( zBx n±′

                                                           
1 A small price to be paid for this simplification is that since  will not be strictly uniform span wise, it results in a slight 
phase difference between neighboring span stations.  It is harmless otherwise. 

2k ′
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Synchronous Solution via Laplace Transform 

Since the water is so stiff in its response to sonic boom, the surface-wave geometry cannot depart 
appreciably (in the leading approximation) from the assumed shape (3.2b).  The secondary, time-
dependent wave field above water may therefore be analyzed as a direct problem with the known shape of 
a time-dependent wavy wall – without the need of knowing a priori, or simultaneously, the corresponding 
wave field underwater.  The spatially dependent part of the synchronous solution of (3.3a), i.e. ( )zx ,ˆ

2 ′

nM

φ , 
which satisfies the governing PDE and the transferred boundary condition at the reference surface z=0, 
can be explicitly determined by the Laplace transform method.  The result of φ  obtained for an 
arbitrary f(x) is expressible after inversion in a convolution integral form, involving the Bessel function of 
the first kind, order zero, and parameters , α, and µ.  These parameters are function of , k, Λ, 
and ψ.  The result was given in Part I (5.8a), and is reproduced in an equivalent form along with relation 
among the various parameters in appendix I, Section I.1.  Essential to the subsequent underwater analysis 
is the overpressure distribution on the wavy surface, transferred (analytically) to the reference surface 
z=0.  They will be evaluated form φ (x΄, 0; y) and φ  (x΄; 0), respectively as  

( 0,ˆ
2 x′ )

,nB 1k ′

1 2

 ( ) ( yx
x

yxp ′′
′∂

∂
−=′′ ;0,;0, 11 φ )  (3.6a) 

 ( ) ( 0,ˆ0,ˆ 222
2 xki

xd
deexp tiyki ′






 ′−

′
−=′ Ω−′′ φ )

]

 (3.6b) 

The Case of an Incident N-wave 

Commonly studied in the sonic boom impact analysis is the incident N-wave reaching the sea 
level, for which the derivative of function f(x΄) in (3.4) can be written as 

  (3.7) 
( ) ( ) ( ) ( )
( ) ( ) ( )[ 11112

11112
−′−′−′=

′−′−′=′′

xxx
xxxxf

where the leading and trailing edges of the N-waves are identified with x΄=0 and x΄=1, respectively, and 
1(x΄) stands for a unit step function in x΄.  The lowest value of f΄(ξ) occurring at ξ=0 corresponds to the 
normalized peak pressure there.  Explicit, analytical results can be obtained for this case, with which 
certain singular solution behaviors have been unambiguously examined in Part I; they prove to be 
valuable for assessing and implementing the numerical methods in the present study.  With (3.7), the 
expression of φ  for the N-wave takes on a special form which distinguishes three ranges of x΄: 2

ˆ

 x΄<0,  0<x΄<1, and  1<x΄. 

The results of the surface velocity potential φ(x΄, 0) in a normalized form are reproduced in Sec. 
I.2 of Appendix I.  A development of φ for large x has proven to be useful in ascertaining the validity and 
accuracy of a more general numerical program for computing φ, and is given later in Appendix III.  A 
remark on the length scale used in normalizing x΄, for the evaluation of φ  may be added.  If the local 
chord were not used as a length scale, f΄(ξ) will not vanish at ξ  as in (3.6).  But the expressions 
derived for the N-wave from (3.6) may still be used with a readjustment in the magnitudes of the 
parameters , α, µ, and the δ.  Similar readjustment would be needed also for these parameters in the 
underwater calculations (see Section 3.3 below). 

2
ˆ

+≥1

1k ′
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An important function in the underwater analysis below is the Fourier transform of the  
determined from φ  above the water (3.5b).  There is, however, and additional part contributing to the 

 at the reference surface z=0 underwater, , resulting from the boundary-condition transfer.  The 
latter (unlike that above water) is not negligible (cf. Part I and Section 3.3 below). 

( )0,ˆ 2 xp ′

2
ˆ

2p̂ BTP∆

 
3.3 Subsonic Wave Field Underwater 

The PDE and the parameters P and Q governing the underwater synchronous field are the same as 
above water, except that the normal Mach number therein is less than unity ( <1). nM

Leading Approximation in Hilbert-Integral Form 

With the value of  above water being known at the reference plane z=0, it proves convenient to 
obtain the 

1p
( zxp ,1 ′ )  underwater in the form of an Hilbert integral 

 
( )

∫
∞

∞− −′
′′

=
ζπ 1

111
1

0,1
x

xdxp
IPp  (3.8) 

where ζ is the complex variable embodying the subsonic Prandtl-Glauert similitude (in the moving frame) 

 zix nβζ +′= ,  

 21 nn M−=β  

and “IP” is the acronym for Imaginary Part.  This reproduces the solution underlying Sawyer’s model for 
a bottomless, flat ocean.  The result can be expressed in explicit, analytic form for an incident N-wave 
(Appendix II, Sec. II.1). 

Synchronous Wave Field via Fourier Transform 

The time-dependent, 3-D overpressure field of (3.3b) is obtained by solving the inversed, half-
plane problem underwater for the ( zxp ,ˆ 2 ′ ) with its boundary value given in the reference surface z=0: 

 ( ) ( ) ( )xZ
z
p

xpxp wnA ′







∂
∂

−′=′ ˆ0,ˆ0,ˆ 1
22 β

o

 (3.9) 

where  is that determined from (3.6b) above water,  is ( 0,ˆ 2 xp A ′ ) )wẐ ( tykiZ w Ω−′′2.exp 2, and the 
subscript “o” refers to the condition at z=0. 

The synchronous underwater overpressure will be obtained (later) as the inverse of the Fourier 
transform (with respect to x΄) 

 ( ) ( )∫
∞

∞−

′ ′′=′ xdzxpezxpFT xi ,ˆ
2
1,ˆ 22

ξ

π
 (3.10) 

                                                           
2 Note that, above water zp ∂′∂ vanishes with z . 
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where “FT” stands for Fourier Transform; FT  is a function of the transform parameter ξ and also the 
spatial variable 

2p̂
z .  The Fourier transform of the PDE governing ( zxp ,ˆ 2 ′ ) underwater yields an ODE in 

z  for FT  2p̂

 0ˆ 22

2

=







−

∂
∂ pFTK
z

 (3.11a) 

 [ ] 222
2 nn
n

QPKK βξζβ
β

−−==  (3.11b) 

where in addition to P and Q, ξ appears as a parameter.3  The K is being used in Part I and most of the 
computer programs below.  The parameter ξ has the significance of a wave number in the underwater 
field, and may be referred to as such. 

The important boundary data on the (reference) half plane z =0 is the Fourier transform of 
 in (3.9) ( 0,ˆ 2 xp ′ )

 ( ) ( ) ( )∫
∞

∞−

′ ′′=′= xdxpexpFTA xi 0,ˆ
2
10,ˆˆ

22
ξ

π
ξ  (3.12) 

The solution to (3.10) is relatively simple: 

 ( ) ( ) ( zAzxpFT ;ˆ,ˆ 2 ξσξ=′ ) (3.13a) 

with 

 ( ) 







−= zKz 2

1

exp;ξσ ,   ( )ξK >0 (3.13b) 

 







= zKi 2

1

exp ,   ( )ξK <0 

This yields a vanishing far field as z →∝ for K >0 and an un-attenuated sinusoidal behavior in 
z  for K <0.  Together with the factor , the latter represents downward propagating waves (in the 
positive 

tie Ω−

z  direction) and hence the correct far-field radiation condition.  The values ξ  and ξ  where 1 2 K  
vanishes mark the transition between two very distinct behaviors.  These two ξ-values are determined 
algebraically by the P and Q form K(ξ)=0.  The wave components ξ in the positive K  range, 
characterized by the exponentially attenuated behavior, may be called evanescent waves, as in optics.  
Whereas, those in the negative K  range may be referred to as effervescent/radiating wave components 
by virtue of the non-attenuating sinusoidal behavior in z .  Nevertheless, the interference effects of 

                                                           
3 Cf. Appendix I, Sec. I.1:  ),cos(22 2

1
2 ψ+=′= akMkMP nn

( ) ( )[ ]ψψ +−+ aaM n
2222 sincos=′−= kkkMQ n

2
2

22 )(  
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combining the radiating sinusoidal waves of different wave number ξ  results in a behavior that also leads 
to a vanishing  field in deep water (cf. 3.4 below). 2p̂

K

p̂

The field of  of interest is therefore 2p̂

 ( ) ( ) ( )∫
∞

∞−

′−=′ ξξσξ
π

ξ dzAezxp xi ;ˆ
2
1,ˆ 2  (3.14) 

Equation (3.14), together with (3.8), is the basis for the subsequent numerical computation of the 
 and  underwater.  The  in (3.14) can be computed for an arbitrary incident wave, f΄(x), by 

taking the Fourier transform of  above water, corrected by the boundary-transferred term, as in 
(3.9).  A fully explicit analytic form of  was obtained for the case of an incident N-wave in Part I, 
and is reproduced in Appendix II, with a slight generalization.  

2p̂ 1p ( )ξÂ
ˆ 2p A ( 0,x′

Â

)
( )ξ

Resulting  Behavior 2p̂

Of interest is the combined effect from all the admissible wave components..  The large- z  
behavior of each individual ξ-component is seen to depend on the function ( z,ξ )σ  in (3.13b).  It gives 
two distinct behaviors of  at large 2p̂ z .  If the K  is positive (and non-zero) for all ξ, it can be shown 
that  must attenuate with increasing 2p̂ z  at a rate faster than the exponential rate shown earlier for an 
individual ξ, (3.13).  A parameter domain in , Λ, and ψ indeed exists for such a condition, this realm 
of in , Λ, and ψ may be referred to as a purely evanescent domain. 

nM

nM

On the other hand, there exists the parameter domain where K  cannot remain thoroughly 
positive, i.e. <0 in some ξ-range, namely ξ <ξ<ξ .  In this parameter domain, application of 
stationary phase or steepest-descent method to (3.14) with the property of (3.13a,b), detailed in Part I, 
yields readily a  behavior that attenuates with increasing depth as an inverse square-root of 

1 2

2 z , being 
much slower than that in the evanescent domain (see below).  Note that each of the individual 
components would have led to an undiminished , had there not been the destructive interference effect 
among neighboring components; the final result obtained represents, in fact, the contribution form a ξ-
neighborhood with the least destructive interference.  The ( , Λ, ψ) domain where K can fall below 
zero in some interval [ξ ,ξ ] will be called the effervescent/radiating domain (even though individual ξ-
components outside of ξ <ξ<ξ  attenuate exponentially as an evanescent wave component).  This 
domain may also be called the cylindrical-spreading domain for its resulting  behavior.  Interestingly, 
the overall contributions to  by the branches ξ<ξ  and ξ <ξ are of the order 

2p̂

nM

1 2

1 2

2p̂
2p̂

1 2 ( )  which is 
comparable to that in the flat-ocean model.  The cylindrical-spreading domain has also been called the 
domain of downward propagating waves in Cheng and Lee (2002).   

2−z
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Owing to its importance to the designs of laboratory and field experiment, the boundaries 
delimiting these two parameter domains of distinctly different behavior in deep water are reproduced 
from Part I in Fig. 3 for four flight Mach numbers based on the speed of sound above water: = 1.05, 
1.50, 2.00, and 3.00.  They are determined by the requirements 

AM

  (3.15a) ( ) 0sincos 222 =+Λ−Λ ψwM

 







−=Λ −

AM
1sin90 1o  (3.15b) 

where the subscripts “w” and “A” refer to underwater and above water, respectively.  The cylindrical-
spreading domain is enclosed by these boundaries.  The first condition corresponds to ξ =ξ = 0 and the 
second to the limit set by the Mach cone angle. 

2 1

 

Analytic Expression at Large Depth ( z >>1) 

An analytic expression of ( zxp ,ˆ 2 ′ ) for large z  not only will facilitate the task of predicting the 
surface-wave influence, but also illustrates the several distinct features of the deepwater sonic boom noise 
filed more explicitly than otherwise.  Owing to is importance for the interpretation and validation of 
numerical calculations, the large- z  expression for ( zxp ,ˆ 2 ′ ) of the effervescent/radiating domain derived 
in Part I is reproduced below. 

 ( ) ( )
( )

( ) ( ) 











 −−+

+
=′ −∗

4
12exp

1

ˆ

2
,ˆ 212

4
3222

π
ηηβ

η

ξ
β

zPSi
z

ASzxp wwnw
nw

w  (3.16a) 

where 

 ,1 2
nnw M−=β  

  (3.16b) Λ= 222 coswnw MM

    ( ),cos2 2 ψ+Λ= nww kMP ( )ψ+Λ−= 22 sin2 nww MkS  

 ,
z

x
z
x

nwβ
η

′
=

′
=    2

2

2
1

nw

ww SP

β
η

η













+
−

=∗ξ  (3.16c,d) 

The  is seen to be a function of η  and parameter , k, Λ, and ψ, and is determined by the 
stationary phase of the integrand of (3.14); it ranges within the two limits ξ  and ξ  

∗ξ AM

1 2

 [ ] 2
2.1 2 nwww SP βξ m=  (3.16e) 
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As before, the subscripts “A” and “w” refer to the media above water and underwater, 
respectively.  For the case of an N-wave, including the unbalanced one,  of (3.16a), with  given 
in appendix II, Sec. II.2, can be expressed in a completely explicit analytic form. 

2p̂ ( )ξÂ

In applying the synchronous solution (3.3a,b) to deep water in a rest frame, using the ( )zxp ,ˆ 2 ′

( )

 of 
(3.16a), the η  and ξ  of (3.16c,d) therein must be evaluated with the x΄ replaced by the substitution 

, as noted earlier in (3.4).  The Fourier transform of  for the moving frames, 
∗

Λ=′ costx 2p̂ ( z;ξσξ )Â  of 
(3.13a,b) will be seen in the rest frame in the same form, except that the wave-number ξ therein should be 
replaced with a frequency ω (normalized by U/L΄) through the substitution (cf. Sec. 7.A in Part I). 

 ( ψωξ Λ−Λ= cossec k )+  (3.17a) 

At a monitoring station directly under the flight track, it suffices to use the substitution 

 ψωξ cosk−=  (3.17b) 

 
3.4 Extension to More General Classes of Surface-wave Forms 

Apart from allowing super-positions of several synchronous solutions pertaining to different 
horizontal surface-wave number, i.e., different k’s and ψ’s, extensions of the analysis to surface-wave 
trains much more general than the sinusoidal one can be made for the class of surface waves 

  (3.18) ( tykxkFZ w ω−+= 21 )

−which must be periodic in the argument with the period 2π.  As is in the theory of Part I, 
the assumption of a continuous and integrable but allowing a finite number of slope discontinuities 
in each period, is implicit.  The surface-depression function  may then be represented by a Fourier 
series in “ ” with period 2π, which is absolutely convergent (Churchill 1941, Pipes 1946).  The wave-
field solutions above and under water can be determined for each Fourier component of , applying 
the synchronous solutions for k, 2k, 3k, 4k, …… 

tykxk ωχ += 21

),(χF
)(χF

χ
)(χF

The validity and properties of the resulting series-solution can be established on the basis of the 
Fourier series of the periodic surface-wave function .  Crucial to the convergence of the resulting 
solution series is the properties of  for a large k.  With this property, the series solution may then be 
shown to converge absolutely (and uniformly).  Thereby, the important feature that the overpressure 
magnitude reduces as 

)(χF

2p̂

z1  can be established for this more general case.  Appendix IV outlined steps for 
the proof, including an analysis for large and small k.  More general/complex surface wave patterns can 
be built up with several or a series of periodic function , each with its own fundamental k-vectors. )(χF

The study can be extended further to treat problems with surface motions for which a distinct 
period cannot be identified, such as one generated from a continuously distributed wave-
number/frequency spectrum.  The attenuate rate of the inverse square root cannot be expected to hold in 
this case, owing to the unfavorable interference effects (once again) of the neighboring wave components.  
For such surface waves propagating in one direction, the underwater disturbances from its interaction 
with the sonic boom may be shown to diminish inversely as the first power of the depth z; this rate is still 
considerably lower than the inverse square law for the flat-ocean model.  For the continuous distribution 
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over a narrow wave-number band, nevertheless, the results of a train with distinct wave number will, of 
course, be recovered.  These properties will also be examined in Appendix IV. 

3.5 Remarks on the Numerical Methods 

Standard numerical procedures were employed in computing the derivatives and integrals derived 
in the theory, which are given explicitly in the Appendices.  Specifically, central-difference algorithm and 
trapezoidal-rule, or their equivalent, were used for the differentiation and integration, except near 
singularities where calculations were implemented with known functional behaviors to maintain second-
order accuracy (in step/mesh size).  For the principal value (PV) of an integral with a pole-type integrand, 
the evaluation is made by assigning the pole to the mid point of the interval (of the ranging variable) 
enclosing it; the PV so evaluated is expected to have a second-order accuracy, unless the integrand’s 
singularity were stronger than a simple pole. 

For the numerical evaluation of the function , it would appear to be unclear a priori how far 
the integration with respect to x should be carried out for its adequate descriptions in the vicinities at ξ , 

, and other of its singularities.  This is because these descriptions will depend on the  or φ  at 
large x.  In this regard, the availability of an analytic (exact) results of  for the case of an incident N-
wave, along with the corresponding large-x description of ϕ , has proven to be very useful in helping to 
determine/ascertain the need of performing numerical integration for  beyond a certain (large) x-
value (See below in Sec. 4, and Appendix III).  

( )ξÂ

1A

2
ˆ

2Aξ 2p̂
( )ξÂ

(ξÂ
2

)

4 Examples with Incident N-Waves 

We consider the N-shape waveform as being typical of aircraft sonic booms.  For incident N 
waves, analytic formula for explicit calculations are available from Part I and are applied below to 
ascertain the importance of the surface Mach number M , surface-wave number , and the surface-slope 
parameter δ.  The calculations also provide an opportunity for assessing the accuracy and effectiveness of 
a more general program applicable to non-N incident waveforms. 

Α k

Prior to the examination of the solution details, brief remarks will be given on several notions 
used in classical descriptions of sea waves and swell, with which the choice of parameters  and δ as 
well as the model’s relevance may find their base.  Also given along these remarks are notes on the 
overpressure and frequency ranges anticipated in the calculations which may be of relevance to baleen 
whale audibility studies. 

k

4.1 Preliminary Remarks 

Sea Waves and Swell: Parameter δ and k  

Surface waves grow under wind over an ocean and form an irregularly looking surface pattern 
known as “sea”--paraphrasing from W.H. Munk (1956).  When a wind-raised waves travel out of the 
storm area, they advance as “swell”, and having traveled large distances they become a series of long, low 
and fairly regular waves of sinusoidal undulation.  The chaotic appearance of the sea surface may still be 
conceptualized as the result of superimposing a number of sinusoidal wave trains one on top of another, 
[see, for example, Bascom (1964)].  Munk (1956) used the notion of “cross sea” to dramatized that sea 
coming from different quarters of a storm system run in different directions, giving peaks and hollows 
when crests and troughs of these non-aligned wave trains meet.  Correspondingly, alternate groups of 
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high and low waves observed in a regular swell may also be caused by interference of the non-aligned 
wave trains from different distant storms (and could be called “cross swell”). 

Whereas, the wave length and wave height are affected by the length of stretch and duration, over 
and during which the wind blow, these studies indicate nevertheless that the wave height and wave length 
of fully developed sea and swell may be grossly estimated as a function of wind speed.  With wind speeds 
of 15 and 20 knots, corresponding to the “moderate” and “fresh” breezes, for example, wave height and 
wave length of a fully-developed sea may be estimated from Table III in Bascom (1965, p. 53) together 
with the relation between wave length and wave period for deep water: 

 Wave Height Period Wavelength 

(a) 15 knots 1.5m 6 sec 56m 

(b) 20 knots 3m 8 sec 100m 
 

where the wave height was bases on the average of the highest 10%, and the wavelength was computed 
from the period using the deep-water formula.  This provides a reference frame with which the relevance 
of the parameter sizes of δ and for the model analyses can be judged. k

While the slope parameter δ in most our model calculations are either 0.02 or 0.025, the surface-
wave number ≡k λπ2

k

varies considerably in the range = 4-16 for aircraft studies, and in the range = 
16-64 for space-launch ascent studies.  The wide variations in among the examples were made with the 
expectation of its significant effect on the wave interaction mechanism, surface-wave height and 
wavelength.  In particular, the surface-wave train with δ=0.02, =16 for a signature gives a length of 
L΄=100m and wavelength λL΄ =40m and a wave height 2δλL΄=2m, not very far from (a) above; the wave 
train with δ=0.02, =64 for a signature length L΄=1km gives a wavelength λL΄ = 98 m and a wave height 
2δλL΄=4m, comparable to (b) above.  The comparison can be brought closer by readjusting δ, k, and L΄. 

k k
k

k

Underwater Infrasound; Audibility 

Except for M > 4.53 under standard conditions, sonic boom noise becomes infrasound 
(frequency < 20Hz,) or nearly so, shortly after water entry.  While the flat-ocean (Sawyers) model would 
predict a frequency far below a unit Hertz in deep water, the sound field generated by interaction with a 
wavy surface produces audible disturbances in the 1-40 Hz range, at levels in common with infrasonic 
tones emitted by ships, icebreakers, drilling platforms, and airguns (though widely differs in waveform 
and duration, Cf. Richardson et al 1995).  Whereas, how many marine mammal species can detect 
infrasound is unknown, certain baleen whale species particularly the fin and blue whales, most likely do 
so (Richardson el al, Sec. 8.6).  It is believed, with the exception of extremely shallow water (where the 
ambient sound-pressure noise level would exceed 100dB)

Α

4, the underwater sound in question can be 
important to marine mammals, as other low-frequency man-made sounds.  Apart from the need for a 
proper frequency range, the received sound-pressure level (at depth) must be high/strong enough to be 
audible/perceivable in the presence of ambient noise.  Recent Studies [Potter (1994), Natural Resource 
Defense Council (1999)] on low-frequency sound impact on marine mammals have placed the 120dB (re 
1 µPa) to be the critical level which is substantially higher than the 80dB (re 1 µPa / zΗ ) maximum 
sound-pressure density spectrum level from ocean traffic noise in deep and shallow waters (Wenz 1962, 

                                                           
* Note that 1dB (re 1µPa)=1dB (re 20µPa) + 26. 
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Urick 1983)5.  [This 120dB falls within the 116-126 dB (re 1µPa) range perceived by a power-mower 
operator (Kinsler et al 1982) or by a pilot/passenger inside the cockpit of a light aircraft, and is loud 
enough, indeed].   

The final results in most of the examples studied below will be presented in the waveform in the 
time domain, that is, overpressure (psf) vs. time (sec.), where psf stands for pound per square foot.  From 
the zero crossing in the waveform, the signal frequency as well as its up/down sweep property can be 
inferred.  The 120 dB (re 1 µPa) level mentioned correspond to an overpressure  

                     120 dB (re 1 µPa) = 1 pascal = Newton/m 2  0.0209 psf. ≈

This dB scale will also be marked along with psf in several time-domain presentations to help 
comparisons. [Note that every 10-fold change in psf corresponds to a change in 20 units on the dB scale].  
Finally, we not that the comparison of signals in dB (re 1µPa) with estimated ambient noise in dB [re 1 
µPa / zΗ ] can not be appropriate for signal durations significantly longer than one second.  The noise 
level must be multiplied (and raised) by the logarithm of the square root of the signal duration (the 
allowed exposure time) for the comparison/assessment study.  For example, a 10-second pulse duration 
would raise the ambient noise level from 80 dB to 86 dB. 

Examples Studied 

Most calculations presented below were made for the sinusoidal wave train  

  )( 21 tiykxki
w ez ωδλδλ −′′+′′−=Ζ=′

which differs from that in the original formulation of Part I by a  phase .  The same phase difference 
enters in the final results for the time-dependent part of the results, such as Â(ξ) and δ .  Since the time 
and spatial origin of the surface-wave train is arbitrary, the difference in question cannot lead to any 
difference of physical relevance and is unessential.  In the following Subsection 4.2, we study the case of 
an incident N wave with M =1.82, = 4, and Λ = = 0 in various stages of the solution process, and 
finally apply it to the specific example with p΄max = 2 psf and δ = 0.02.  It illustrates the key stages 
through which the final numerical solution was obtained; the same solution process was used for other 
more extensive studies with wider variation in M , as well as other physical parameters.  Prior to 
Subsection 4.4, an examination is made on the results of a numerical procedure applicable to non-N 
incident waveform (Subsection 4.3). 

πie
2P

Α k Ψ

kΑ

4.2 Example of Solution Process: M = 1.82, k = 4 Α

This example corresponds to the 2-D interaction problem and is applicable to the wave field 
directly under the flight track (Λ = 0) while the surface-wave vector aligns exactly with the flight 
direction ( = 0)Ψ 6.  We shall examine in this case the adequacy of our results at various stages of the 
solution process, including certain methods of implementation and the use of the far-field (stationary-
phase) formula. 
                                                           
5 This comparison is meaningful provided the duration of the sound pulse does not far exceed one second.  Note that 
1dB[re 1(µPa) */Hz] in sound-pressure density spectrum level is equivalent to 1 dB [re 1µPa /2 zΗ ] when expressed in 
the form of sound-pressure level. 
6 Results for this case were presented in one of our earlier study (Cheng & Lee 1998).  While significant difference from 
the data set are not apparent, the older results did not satisfy the radiation condition in the far field correctly, apart from a 
number of uncorrected algebraic error in the computer code. 
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The first stage of the calculation is to compute the normalized forms of surface velocity potential 
φ(x΄,0) pertaining to the synchronous solution, using the convolution integral given in Sec. I.2 of 
Appendix I.  Its real and imaginary parts are shown by the pair of graphs in Fig 4.a as functions of x΄.  
The accuracy of the function Â(ξ; z ) to be computed later is sensitive to the error of φ at large x΄; a set of 
asymptotic expansions for large x΄ was developed to ascertain the solution accuracy and to reduce 
computation work (Cf. Appendix I, Sec. I.2).  The good agreement between the large-x΄ expansion and 
very-accurate numerical integration are seen in Fig. 4.a.  With the x΄-derivative of φ(x΄, 0) and the 
analytic result for the boundary-value transfer term [Cf. (3.9), Appendix I, Sec. I.2], the spatial-dependent 
part of the synchronous solution of the surface pressure (x΄,0) is obtained; its real and imaginary parts 
are shown in Fig. 4.b.  For this and most other examples, the Â(ξ) was computed from the Fourier 
transform of φ(x΄, 0), together with an explicit, analytic form of the Fourier transform of the boundary-
transfer correction.  Note that leading and trailing edges of the overpressure of the incident N-wave are 
located at x΄ = 0 and x΄= 1, respectively.   

2p̂

The important function Â(ξ), i.e. the Fourier transform of (x΄, 0), may now be computed 
numerically [Cf. (3.12)] and the real and imaginary parts of results are presented in Fig. 5.  The Fourier 
integral was computed by trapezoidal rule implemented with local treatment of the known singularities 
expected at ξ = ξ , ξ associated with the φ(x΄, 0) at large x΄.  [The standard FFT procedure does not 
give adequate results in this case].  Our numerical procedure proves to be indeed very accurate—the two 
graphs in Fig. 5 are indistinguishable from the exact, analytic results for the N-wave from Part I (in filled 
circles).   

2p̂

1A 2A

The underwater solution to (x΄,2p̂ z ) is obtained from the inverse Fourier transform of the 
product Â(ξ)σ(ξ; z ) for a specified z , (3.14).  The distribution of real and imaginary parts of at two 
different depth levels z = 0.5 and z = 2.5 are shown in Fig. 6 and Fig. 7.  In Fig. 6 for z = 0.5, where the 
depth is only a half of the signature length L΄, the far-field formula (light dashes) works surprisingly well 
over the whole x΄-range except near x΄=0, where the formula still provides the right behavior and order of 
magnitude.  The light dashes computed from the far-field formula, (3.16), is seen from Fig. 7 to closely 
capture the oscillatory features calculated by the intensive numerical integration (solid curve) at a depth 
level which is two and a half of the signature length L΄(z=2.5).   

2p̂

To see how these results from the wavy-ocean model can be meaningfully compared with one 
based on the Sawyers’ model, we must assign values to the slope parameter δ, signature length L΄, and to 
a reference surface overpressure.  For the present purpose, we only need to assume δ=0.02, and will 
present the results in terms of a normalized overpressure and the normalized time.  Three graphs 
comparing the overpressure waveforms (in the time domain) predicted by the flat-ocean model (dashes), 
the time-dependent part of the wavy-ocean model (dash dots) the sum (total) of the two (solid curve) are 
presented in Figs. 8, 9, and 10, for the three depth levels z=0, 0.5, and 2.5, respectively.  As is apparent 
form Fig. 8, the time is normalized by the transit-time L΄/U and the reference overpressure is so chosen 
that the normalized maximum surface pressure equals to 2.  The persistent ringing feature is the response 
of the supersonic wave field above water to the sinusoidal surface-wave train and is clearly a secondary 
effect in the presence of the towering N-wave signature over the segment 0<x<1.7  In Fig. 9 where the 
overpressure waveform at depth level of one-half the signature length (z=0.50) is presented, the wavy-
surface effect begins to markedly alter the otherwise smoothly degenerated N-wave profile (in dashes); 
the peak over/under-pressure is seen to increase by nearly 45%.  At z=2.5, Fig. 10 shows that even at this 
moderate depth level the expected dominance of the surface-wave interaction effect is fully realized.  
Here, the persistent ringing feature next to the surface transform itself into a packet of wavelets (dash-dot 

                                                           
7 Note that the overpressure waveforms in Figs. 8-10, are plotted as negative  vs. the normalized time. p′
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and solid curves) and overwhelms the otherwise primary (Sawyers) wave-field (in dashes).  The 
waveform indicates a (slow) frequency downshift/sweep in the course of its passage, in accord with 
Doppler’s principle.  We note, in passing, that, this graph could be applied directly to an example with a 2 
psf maximum surface overpressure.  In this case, the peak overpressure would reach 0.06 psf at z=2.5 well 
above the 120 dB (re 1 µPa) or 1 Pascal mark mentioned earlier. 

4.3 Test of a General Computer Code: M =1.5, k=4 Α

Results obtained for most our earlier studies were obtained by a computer program made strictly 
for incident N-waves.  Usefulness of the program for space-launch applications requires consideration of 
non-N waveforms, for which a program is developed.  There are four stages in the solution process, at 
which the results obtained are critical, namely, the surface velocity potential φ(x΄, 0), the contribution 
from the boundary-value transfer or its Fournier transform FT(∆P ), the Fourier transform of (x΄, 0), 
i.e. the Â(ξ), and finally the (x΄,

BT 2p̂

2p̂ z ) at depth z  underwater.  Adequacy of this more general program in 
generating the surface velocity potential and the boundary-transfer term were of concern in view of the 
anticipated solution singularities.  Detail comparison with the N-wave results in these four stages provides 
a crucial test for the general program.  The unquestionable agreement in the comparison is evident from 
Figs. 11-13 made for the case M =1.5, k=4.  The comparison for the normalized (x΄,Α 2p̂ z ) in Fig. 13 
was made at the depth z=2.5 corresponding to z = =2.36 in this case. zwβ

4.4 Underwater Waveform Properties: M  and k Dependence Α

The wave interaction effects analyzed are seen to depend linearly on the slope parameter δ, but 
are more critically (and nonlinearly) dependent on the surface wave number k and Mach number M .  
These dependencies have been studied for wide ranges of M  and k.  The results for M =1.5, 1.88, 2.38, 
and k=4, 16 are shown and examined below. 

Α

Α Α

Â(ξ): Fourier Transform of Surface Overpressure 

The real and imaginary parts of the important function Â(ξ) are shown for the four (M , ) 
combinations, namely (1.5, 4), (1.5, 16), (1.88, 16), and (2.38, 16).  Note the = 

Α k
k λπ2 =16 gives λ=0.39 

and corresponds to a surface wavelength nearly 40% of the sonic-boom signature length L΄. The Â(ξ) 
function shown in Figs. 14-16 is fundamentally important in that it is, in essence, the equivalence of the 
(time-dependent) acoustic-source distribution generated by the wave interaction that will control the 
wave-packet envelope in the deeper part of the water.  These Â(ξ) functions were computed from the 
exact, analytic formulas derived in Part I for incident N-waves, reproduced in Appendix II.1.  The 
symbols ξ and ξ in the figures, mark the ξ-value of the two square-root singularities.  As noted earlier, 
these and other singularities lie completely outside the range ξ <ξ <ξ  through which Â(ξ) exerts its 
control in the far field (

1A 2A

1 2

k z >>1).  These singularities must, nevertheless, be properly treated in numerical 
calculation at locations which are not so deep ( k z =0(1)).  Of interest are the several ξ-values where Â(ξ) 
vanishes; these zero-crossings will be found along the certain rays of constant zx′=η in the far field, 
along which the time-dependent pressure filed must altogether vanish.   

Signal Duration and Ambient Ocean Noise 

In an attempt to make the results more pertinent, we have assumed in the calculations a signature 
length L΄=300ft. and the surface-wave slope parameter δ=0.025.  This allows the description of sound-
pressure waveform in units of psf and second.  As seen below, the sound-pressure of interest are found to 

 20 



be well above 0.002 psf corresponding to the 100 dB (re 1µPa) level over a signature duration 4-6 
seconds.  From the viewpoint of signal’s audibility, this observation is helpful in that the maximum 
sound-pressure level (averaged over one second) of the ambient noise in deep as well as shallow water are 
contributed primarily by ocean traffic, and were estimated by Wenz (1962) and Urick (1983) to be 80 dB 
(re 1 µPa/ zΗ ); its resulting effect on the perceived signal should remain well below the 100 dB (re 1 
µPa) mark, as long as the signal duration does not exceed 100 seconds.8   

Comparison with Flat-Ocean Model 

The results obtained for the deep water (z=1500ft.) presented in the lower parts of Figs. 17a, 17b, 
18, and 19 shows unquestionably the dominance of the surface-wave train effect over the corresponding 
signals of the flat-ocean model.  Even at a depth level as close to the surface as z=150ft., apart from the 
distinct ringing feature absent from the flat-ocean analysis, a peak overpressures 40% higher than 
Sawyer’s prediction are found in all cases studied. 

Effects of Surface-Wave Number Change 

The effects of increasing k can be studied with Fig. 17a for k=4, M =1.5, and Fig. 17b for k=16, 
M =1.5, where results computed for the small and large depth levels (z=150ft, 1500ft.) are presented.  
Here, the noticeable reduction in overpressure with the four-fold increase in k is evident upon comparing 
the results for k=4 in Fig. 17a with those for k=16 in Fig. 17b; the results are in accord with the 

Α

Α

zk1  
rule form the theory noted earlier.  Similar comparisons with same conclusion have been made for 
M =1.88 and M =2.38 and will not be repeated here. Α Α

The instantaneous frequency pertaining to the individual carrier wave (wavelet) of the wave 
packet is obviously controlled by the surface wave number k.  Increasing k is expected to cause the wave 
packet more densely packed.  Counting the “zero-crossing” of the waveform and dividing it by the period 
covered in each case indicates that at least for M =1.5, the average wavelet frequency is not far from the 
value of k (with the exception of k=16 at z=150ft.).  However, at the higher Mach numbers, the number of 
zero-crossings will be seen to increase much more rapidly with k.   

Α

Mach-number Influence on Wave-field Characteristics 

(i) Overpressure peak.  The wave-packet features are made more distinct by increasing the Mach 
number M .  The peak overpressure in the large depth level (z=1500ft.) is seen from Fig. 
17b, Fig, 18, and Fig. 19 to increase successively from 0.035 through 0.05 to 0.09 psf, as M Α  
increases from 1.5 through 1.88 to 2.35.  A lesser peak increase trend with Mach number is 
also seen from Fig. 17b, Fig. 18, and Fig. 19 at the smaller depth level (z=150ft.), with the 
peak overpressure reaching 0.25, 0.30, and 0.35 psf for M =1.5, 1.88, and 2.38, respectively. 

Α

Α

 
(ii) Carrier-wave frequency.  The number of wavelets seen earlier in the waveforms at M =1.5 

are now seen to give a more densely packed waveform at the higher Mach number, M =1.88 
and 2.38 (Cf. Figs. 18, 19); here the time intervals between neighboring wavelets are made 
even smaller; therefore, the frequencies of these wavelets – the carrier-wave frequencies – 
become much higher.  Counting the number of peaks in the waveform (or the half of the zero-
crossing number) within a given interval should give a fair estimate of the carrier-wave 

Α

Α

                                                           
8 For a duration of 100 sec  the sound-pressure noise level in this case would accordingly be 100 dB (re 1µPa). 
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frequency.  Since the wave form in the forward part is more densely packed than in the real, 
the estimates must be made for the forward and real parts separately.  Applying the counting 
to the forward and real portions of the waveform at depth level z=1500ft. yields two sets of 
frequency estimates: 

 
 

ΑΜ  1.5 1.88 2.38 

t  <0 19 Hz 26 Hz 43 Hz 
t  >0 14 Hz 19 Hz 24 Hz 

 
 Similar estimates with slightly less values are found with waveforms at the small depth levels 

(z=150ft.). The frequency downshift/sweep shown is expected from the Doppler principle.9  
This (carrier) frequency variation, however, indicates a (time-wise) building-up process of the 
acoustic power spectrum, namely, as the sound sources pass by, only a portion of the 
spectrum near the higher frequency end will first be built up; the remainders of the spectrum 
in the mid and lower frequency end are completed later (in time).  The deep-water wave field 
dictates that frequency range of this spectrum be limited to the interval [ξ ] of (3.16e) 
noted earlier in Section 3.  These frequency downshifts in the waveform (observed in the rest 
frame) signifies that, forward, backward (as well as downward) propagating waves will be 
observed in a frame moving with the sonic-boom waves, as demanded by an acoustics model 
satisfying the correct radiation condition in the deepwater far field.  

2,1 ξ

 In passing, we note that as these carrier waves spread and move away, the propagation speed 
observed in the moving frame (identified with that of the crests and troughs) is shown (in Part 
I) to be none but the group velocity. 

 
4.5 Non-aligned Wave Trains 

For surface-wave trains not aligned with the flight track and/or at span stations not directly under 
the flight track (cf. Fig. 3), the solution procedure remains the same except the constants P, Q, Ω etc. must 
be evaluated by the chosen values of Λ, , M , and k in accordance with Appendix I, Section I.1.  
[Also refer (3.16a, b)]  As observed earlier, the significant effect of the surface-wave interaction can be 
found only inside the and (Λ+ ) domain [Cf. Fig. 3 and (3.15a, b)].  To see how the underwater 
wave field within this domain holds up for non-vanishing Λ and/or Ψ  is the main objective for a study 
comparing solutions for various combination of Λ and   Several examples in ranges of 

Ψ Α

2
nwΜ Ψ

.Ψ Λ <30°, 
Ψ <30° are examined below for a fixed Mach number M =2.38. Α

In as much as the effects of Λ and Ψ on the overpressure in deep water are the main concern, 
only function  needs to be considered; comparison of its value with the corresponding value obtained 
earlier for Λ= =0 will suffice to indicate the degree of significance in question.  As will be seen below, 
while the waveforms can be noticeably altered, the magnitude of he peak overpressure and the general 
characteristics of the wave-packet are not significantly changed from those with Λ= =0 studied earlier.  
Figures 20 and 21 compare results of φ(x΄, 0) and Â(ξ)  in four (Λ , ) combinations 

2P̂
Ψ

Ψ
Ψ

  (Λ , Ψ ) = (0,0),  (-15,0),  (0,15),  (-15, 15),  

                                                           
9 Frequency down-sweep is commonly reported in works on whale calls (D’Spain et al 1995, Cumming & Thompson 
1971, Edds 1988) 
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with the Mach number and surface wave number fixed at M =2.38 and k=16.  The corresponding 
waveforms in are shown for the depth level z=2.5 in Fig. 22.

Α

2p̂ 10  The wave-packet structure for (Λ , ) 
= (-15, 0) in Fig. 22 appears to depart more significantly from that for (Λ , ) = (0, 0).  It was uncertain 
that the far-field formula for large kz could still remain useful at the station Λ=-15° in this case.  Figure 23 
compares the prediction by far-field formula for  with the numerical calculation for (Λ, ) = (-15°, 0) 
at z=2.5; the highly varying wavelet structure (in both amplitude and frequency) in the range 

Ψ
Ψ

2p̂ Ψ

x′ <3 does 
not compare as well as for Λ= =0.  Whereas, detail agreement is found over the wilder range Ψ x′ >3. 

Wider non-aligned surface-wave angles are considered in Figs. 24-26, in which results from three 
(Λ , ) combinations are compared for Ψ

 (Λ , Ψ ) = (0, 0),  (0, 30°),  (-30°, 30°) 

are compared again with M =2.38 and k=16.  For these three cases, the waveform in the time domain 
were also computed for δ=0.025 and shown in Figs. 26.Xa,b,c Conclusions on the peak overpressures and 
characteristic features of waveforms and their dependence on Λ and are again similar to those on the 
preceding figures.  From these examinations, the peak overpressure and waveform characteristics are seen 
not being significantly different from the aligned case Λ= =0. 

Α

Ψ

Ψ

The final results for the time-domain overpressure waveforms are obtained for each of the three 
combinations of (Λ, ), shown and compared in Figs. 26Xa,b,c for the same depth level z=2.5, assuming 
M =2.38, k=16. 

Ψ

Α

4.6 Multiple Trains Interference: “Cross Sea” 

The solution procedure for the nonaligned surface-wave train ( Ψ ) can be adopted to study 
underwater wave field for a sea surface resulting from a combination of an arbitrary number of horizontal 
wave trains, each with its own wave height 2 , wave number 

0≠

nnλδ nλkn = π2 , and non-alignment angle 
:  nΨ

  (4.2) ∑ −+−== )( 2),( tykxki
nnw

nnineyxZz ωλδ

At a given Mach number M  and a span station identified by the swept angle Λ, the solution to 
the normalized overpressure underwater is the real part of   

Α

 ∑
=

Ω−′′+′′=′
1

21 );,(ˆ);,(
n

ti
nn

neyzxpyzxpp δ  (4.3) 

The mode superposition in (4.2), (4.3) are expected to give rise to interference patterns in the 
surface-wave topography and the corresponding underwater wave field.  Chaotic-like waveforms could be 
generated with two or three trains, depending on k , and δ , aptly called “cross sea” (Munk 1956) in 
such case.  In the following, three cases will be examined directly under the flight track Λ=0: (i) A 

,, nn Ψ n

                                                           
10 Recall that to obtain the complete time-domain waveform, one must multiply  with , and 

covert 
2p̂ )](exp[ 2 tyki Ω−′δ

Lx ′′  to L′Ut .  In application, the product must also be rescaled with the reference overpressure at the surface, 

which subject to change from station to station by the factor cos . Λ2
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combination of two surface trains which are well aligned with the flight track (Λ= =0), but have wave 
lengths rather close to each other (k=3.8, 4.0); (ii) A combination of two obliquely crossing trains, one 
with (Λ , Ψ ) = (0, 0) and the other with (Λ , Ψ )=(0,30°); (iii) A particular case involving two crossing 
surface trains with equal and opposite alignment angles, such as (Λ , )=(0,30°) and (0, -30°).  Except 
for k=3.8, the function 

Ψ

Ψ
),(ˆ zxp ′

2p̂

2p′+

 of the synchronous wave field have been computed and shown earlier. 

w

Ψ

Ψ

p′

Two Aligned Wave Trains: Λ= =0, k=3.8, 4.0 Ψ

Figures 27 a, b, c, d present results of interaction of an incident N-wave with wavy surface made 
up of two sinusoidal trains which are aligned with the flight track (Λ= Ψ =0) and have rather close wave 
numbers k=4 and 3.8.  The example in Fig. 27 a shows the surface depression  in ft. as function of 
time in sec., resulting from the sum of the two sinusoidal shapes, assuming δ=0.025 and L΄=300ft..  The 
wave field underwater generated from the wavy-surface interaction can be computed as the sum of two 
synchronous solutions, one for k=4.0 and the other for k=3.8.  The overpressure waveform at z=5 
L΄=1500ft for k=4.0 and k=3.8 are shown in Fig. 27b and Fig. 27c, respectively.  Apart being almost 
indistinguishable, the envelope of these two waveforms possess a strong fore and aft symmetry.  This 
symmetry is completely destroyed, however, in Fig. 27d as a result of their combination.  

Z

Example of Obliquely Crossing Trains 

We consider the wavy surface directly under the flight track (Λ=0) made up of an aligned ( =0) 
and a non-aligned ( Ψ =30°) trains.  For simplicity, we assume k=16, δ=0.02 for both trains.  The result 
can be generated with the  solutions presented earlier in Figs. 26.Xa,b,c with (Λ, )=(0,0) and (0,30°) 
for M =2.38 and k=16 at z=2.5.  The sum of the two yields the  waveform of interest and the result in 
total overpressure (  is shown in Fig. 28a.

Ψ

Α 2p̂
)1p′ 11  Evidently seen are the amplified overpressure peaks 

and the asymmetrical features in the waveform envelope caused by the mutual interference of the two 
crossing surface trains. 

Example of the Special Case: (0, ) & (0, - ) Ψ

The very special case, in which the obliquely cross wave trains are set at equal but opposite 
angles with the flight track, may serve to illustrate the interference effect without much additional effort.  
Since the entire water column under the flight track is now a symmetry plane, the overpressure 
distribution perceived at any point (any z >0) therein is none other than twice the waveform value of the 

 obtained from  for (Λ, )=(0,30°) shown earlier in Fig. 26Xb, provided we take M =2.38 as was 
in Fig. 26Xb, and the same δ in both trains.  The result is shown in Fig. 28b for δ=0.025.  On the other 
hand, were the δ’s of the trains opposite in sign, or the ’s differing by ±180° (or its odd integral 
multiple),  would vanish and no wave could be found in the symmetry plane other than that in 
Sawyers’ theory.  To be sure, the δ can be complex; the event with the doubling effect presented in Fig. 
28b and the occurrence of  in the symmetry plane cannot happen unless δ=±1. 

2p ′ 2p ′ Ψ

0≡

Α

wZ

2

2p′

4.7 Departure from Sinusoidal Surface Waves 

The study of sonic boom interaction with sinusoidal surface waves may be extended to treat the 
interaction problems for two kinds of water waves, namely, the Stokesian waves (Stokes 1847; Yih 1977, 
pp.206-308) and the “deepwater solitary waves” (Yuen & Lake 1980, Redekopp 1980).  The former 

                                                           
11 The results presented in Figs. 28a and 28b for  were based on the peaks and valleys read from the graphs of Figs. 
26Xa and 26Xb, and may suffice for illustrating the nature under a cross sea. 

2p
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represents a correction to the sinusoidal wave train for weak nonlinearity and the latter is also a periodic 
wave train with slowly varying amplitude of which the envelope takes on a solitary-wave like shape.  
Applications to the problem involving the solitary-wave like wave train will be the subject of a 
subsequent study.  In the following we shall examine the nonlinear corrections to surface waves and to 
the underwater wave field based on the Stokesian approach.  Numerical example underwater will not be 
presented below, since the nonlinear effect as well as the instability growth rate for the range of δ of 
interest is too small. 

The Stokes expansion for the surface elevation to the third order in (2πδ) is (Yih 1977,pp. 201-
203) 

 ( ) ( ) ( ) ...4cos2
3
13cos2

8
32cos]2

24
17[cos/ 322 +++++= kxkxkxkxZw πδπδπδπδδλ   

  (4.4) 

This is a Fourier series representation of a periodic wave train with a fundamental period 
,2 kπ of which the underwater acoustic field is amendable to treatment noted in Section 3.4 and the 

underlying theory detailed in Appendix IV.  The series affords the inference of the maximum amplitude 
occurring at the highest points of the free surface, which are the vertices of angles 120°.  Many terms 
have since been added and corrected (see Van Dykes 1975, p. 216).  Schwartz (1974) extended the series 
to 117 orders, and, after a slight modification of the expansion parameter, was able to calculate the 
maximum height to five figures.  Owing to the nonlinearity, it may not be possible to infer from the series 
(4.4) or its extension the precise ratio of the wave-height to wave-length; Bascom (1964) gave an 
empirical value of the ratio for swells occurring in real ocean to be 1:7; whether it comes close to that 
from Schwartz’s (1974) calculation is unclear.  At this ratio and beyond white caps and spays ensure.  
Using 2δλ of the sinusoidal train to indicate the wave height, Bascom’s 1/7 criterion for the vertices 
formation calls for δ = 1/14 = 0.071.  Using the maximum slope of sinusoidal surface 2πδ as the 
maximum slope at the vertices, (with the 120° including vertices angle) the δ would be subject to the 
requirement 092.0230tan ≈°≤ πδ .  The range of δ=0.01-0.025 considered in our numerical study is 
well below these estimates.  Figs. 29 a, b, c show the difference in surface depression  of the Stokesian 
wave and the corresponding sinusoidal wave with k=4 for δ=0.025, 0.05 and 0.10.   

wZ

Even before their disintegration, instability of periodic wave trains can grow on account of 
nonlinearity (Benjamin & Feir 1967).  The growth rate of the instability, in terms of the imaginary part of 
the frequency of the stability theory, ω , may be shown to be comparable to the square of the product of k 
and the half wave height (Yuen & Lake 1980, Redekopp 1980) 

i

 ( )[ ]22πδω Oi =  (4.5) 

being small and comparable to 0.016 for δ=0.02, and to 0.025 for δ=0.025.  In this sense, 
instability growth of the sinusoidal surface train may be considered quite insignificant. 

 
4.8 Sonic Boom over Shallow Water 

The theory of Part I and the foregoing studies do not allow the presence of a sea floor. The 
potential sonic-boom impact is expected to be much more severe in the shallow coastal water than in the 
deep open sea.  Here, the descriptions “deep” and “shallow” refer to the ratio of ocean depth to the (sea-
level) sonic-boom signature length, Lh ′ , being much larger and smaller than unity, respectively.  The 
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theory extension to shallow water can be readily made, and lends itself to a study of the sediment-
boundary waves.  Occurrence of the latter phenomenon depends critically on the sediment shear-wave 
speed, , which can be very low near the interface of certain sediments.  There have been considerably 
different opinions with regards to the vanishing magnitude of C  next to the sediment interference and its 
importance (Stoll 1989; Hamilton 1971; Badiey et al 1996,1998; Clay & Medwin 1977; Chapman & 
Godin 1999).  In the following we shall examine examples with the simplest sediment model to illustrate 
the potential of sediment wave excitation by sonic boom, proposed originally in Desharnais and 
Champman’s (1998) paper. 

sC

s

A

h

L′

Flat-Ocean Bottom Effect 

The sea-floor effect on the wave field below a non-wavy ocean under sonic boom can be studied 
as an extension of Sawyers’ theory.  For Μ <4.53 (under standard conditions), the elliptic problem was 
solved in Cheng & Lee (1998) paper through conformal mapping to a half-plane.  As an example for 
demonstrating the bottom effect and the relative insensitivity of the wave field to the bottom’s presence 
with the exception for its vicinity (and unless 

A

Lh ′ =1/2), we consider a model of an open channel (with a 
flat, free surface) and a variable/adjustable (channel) depth h.  We would like to predict the sonic boom 
generated overpressure distributions at a fixed distance below the water surface, which is taken to be one 
half of the signature length, z= 2L′ , while the channel depths changes successively from h=8 to h= .2L′  
The result of the calculations made for an incident N wave at Μ =1.5 are shown in Fig. 30 together with 
a sketch identifying h,  and the coordinates, where the (negative of twice of the) overpressure ratio L′

 max2 P
p

′
′−  

observed in a frame moving with the sonic-boom wave is plotted as functions of Lx ′  for five 

channel depths in the range 0.5< L′h <8.  The explicit integral form of the solution for Up ρ′−=′u  is 
also reproduced in Fig. 30.   

Of interest in these plots is the relatively small departure from the Sawyers’ waveform (for 

infinite L′ ) as the floor is raised, i.e., as the channel depth reduces, until the fixed (monitoring) 

station/level 2Lz ′=′  is reached, where an 80% peak-value increase is found on the sea floor.  Note that 

for h =1, the monitoring station is, exactly at the half channel depth where the difference from 
Sawyers’ result is no more than 5%.  Accordingly, bottom effect may not appear to significantly affect the 
overpressure field under a flat ocean, except next to the sea floor and unless the open channel becoming 

shallower than Lh ′ =0.5.   

The markedly amplified signal next to the bottom is nevertheless a significant feature to be 
recognized, concerning effects on the sea floor environment.  The likelihood and issues of exciting 
sediment boundary waves by sonic booms over shallow coastal water will next be briefly examined. 

Sediment-Boundary Waves Under a Shallow Sea 

The 2-D model 

To allow interaction of an elastic, solid bottom wall with a hydro-acoustic medium, a 2-D 
shallow-ocean model is assumed which satisfies the continuity condition in the normal velocity, normal 
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stress and shear stress across the interface. For this model three potential functions will be considered.  
Namely, in addition to the φ for the water, a scalar potential Ф and a component of the vector potential  
for the sediment median, will be simultaneously solved.  Each of these potentials satisfies their respective 

acoustics equations pertaining to the three characteristic propagation speed of the media  and C  
with the subscripts “1” referring to the water, “p” and “s” referring to the compressive waves and the 
shear waves of the elastic medium, respectively.  (See, for example, Tolstoy & Clay 1966, 1987).  In the 
elastic medium, the normal stress and shear stress (on the x-y plane) are 
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where λ and µ can be related to C , , and density ρ as p sC
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The three compatibility conditions across the interface at z=0 give, in the rest frame, are 
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where the subscripts “1” and “2” refer to the water and the elastic media, respectively.   

Wave-train mode 

For an infinitely extended elastic medium in half space, the three conditions at the water-solid 
interface at z=0, and the prescribed overpressure at the air-water interface z=-h together with a radiation 
condition or evanescent behavior at z→∞ (cf. sketches in Figs. 31-33), will suffice for the determination 
of a synchronous solution in the wave train form: 
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This equation system, with the implicit assumption of the two homogeneous media, is no more or less 
than that for a homogeneous wave guide with an elastic wall modeling ocean’s sedimentary layer 
(Tolstoy & Clay 1966, 1987, pp.134-134), and is in common with the mathematical models of submarine 
earthquake (Press et al 1950), mud slides (Ewing et al 1952) and large underwater explosion (Milne 
1959).  The depth of the water layer/channel h, or its product with the wave train wave number, αh, is an 
important parameter that distinguishes the system from the Stoneley wave  [recoverable from the limit of 
an unbounded αh→∞ ], and from the Rayleigh wave corresponding a vanishing water layer [recovered in 
the limit of a vanishing αh→0 ]. 

Of interest is the free propagation mode, susceptible to excitation.  Unlike wave guide studies 
concerning mainly with signal transmission along the wave guide (in the x-direction), our interest is how 
a traveling acoustic source, such as the sonic-boom wave field over water surface, may excite and 
maintain a sediment boundary wave.  In Desharnis and Chapman’s model (1998), a more realistic multi-

layer model representing variable  and  was employed.  Whereas, the homogeneous elastic model 
adopted here offers greater simplicity in the analysis and perhaps more clarity in the results.  Apart from a 
less ambiguous solution, the following study takes into account the finite-water depth effect on the 
multimedia-interaction, not accounted for completely in Deshanis and Chapman’s (1998) analysis. 

pC
sC

In the following analysis, we consider an N-wave incident upon the flat, shallow-ocean with the 
foregoing sediment model.  Much details in the problem formation and solution procedures are in 
common with existing analyses of elastic-wall wave guide (Tolstoy & Clay 1966,1987) and will not be 
detailed here.  The analysis is made in the moving frame at the uniform horizontal velocity U, same as 

that of the sonic boom wave field.  In this frame, (4.8a, b, c) is unchanged, except 
22 t∂∂  is replaced by  
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and the (αx-ωt) in (4.9) is changed to (αx-Ωt) with Ω=Uα+ω.  The velocity of the reference frame U is 

chosen to coincide with the phase velocity - αω  so that the complex exponential factor in (4.9) become 
time-independent. 

The subsonic wave-train mode 

The system underwater admits solutions with evanescent behavior, with the sediment interface 
chosen to be at z=0: 

 zz eAeA αβαβφ 11
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for real value of 

 2
11 1 Μ−=β , 21 pp Μ−=β , 21 ss Μ−=β  (4.10d) 

 28 



i.e. for 11 CU≡Μ <1, pp CU≡Μ <1, ss CU≡Μ <1.  It also admits effervescent (radiating-wave) 

behavior like zie αβ

2Α

 if any of the β becomes imaginary if M>1.12  From the interface boundary conditions 
at z=0 at z=-h, linear relations among the four constants  B, and C, can be obtained.  After 
eliminating  and C , one arrives at 
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 (4.11c) 

Note that the surface overpressure prescribed over the (flat) water surface has been assumed, up 
to this stage, to be a sinusoidal one 

  (4.12) ( ) xieUxp ααρα ⋅=′ ˆ;0, 22
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Free mode existence condition 

The condition for the free mode (with propagation velocity U) is seen from (4.11b) as 
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identifiable with the free mode condition for the homogeneous shallow-water wave guide with an elastic 
solid floor (Tolstoy & Clay 19661987, p. 135); it reduces to that of the Stoneley wave for an unbounded 
h, and to that of the Rayleigh wave in limit of a vanishing h.  With a finite, non-vanishing h, the wave 

speed U (through , , and Μ ) is now a function of the wave number α, hence, unlike the Stoneley 
and Rayleigh waves, this interface wave is dispersive.  The above condition indicates a permissible range 

U (or Μ ) for the free mode under 

1Μ pΜ
s

A

 < <-1. (4.13c) 2− νΒD

                                                           
12 The form zie αβ−  is unacceptable because [ αβ xzi +−exp ]  does not give the correct Mach angle. 
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Note that for this free mode to occur, its propagation speed U must be less than C and , 
i.e. thoroughly subsonic. 

,,1 pC
sC

An alternative is having U>  and C , >U, i.e. being supersonic underwater.  Equation 
(4.13b) is still a valid condition because 

1C s pC

 1
2
11 βi−=Μ− ,                        hih ss αβαβ −=  

in this case, with which the RHS of (4.13b) is changed according to 
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This would give an effervescent behavior in Ψ  with respect to depth level z.  The thoroughly 

subsonic case pertains to our interest, since we are concerned mainly with Μ <4.53 in the present 
context. 

A

Overpressure field in water: generalization 

The overpressure in the water channel/layer can be calculated from 
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and, with results from (4.11) and other relations established among constants  B, and C, may be 
obtained in a normalized from 
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which satisfies the boundary condition =1 at the water surface z=-h.  The product  is a solution to 

the system with at z=-h, so is its integral with respect to α 
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Since  I is recognized as the inverse Fourier transform of the underwater wave field 
generated by a concentrated surface overpressure 

,1),(ˆ =− ξhq
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  (4.16b) ( ) ( ) ( xxxp −==′ δδ0, )

The inverse transform of the product of  and another function of ξ, say , not to be 

confused with  in (4.11b), may then be identified with the (normalized) overpressure field underwater 

for a known surface overpressure  (in the moving frame) 
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with 
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While the free mode for  if exists, is given by ,0ˆ ≡P
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 (4.18) 

under a distributed surface overpressure , there is the effect of the forcing described by (4.17) with 

the (z, ξ) given by (4.15b).  Where the condition (4.13) for the free mode is met, (4.17) gives the result 

of forcing at resonance condition.  The pole-like singularity of  occurring at some ξ→0 is responsible 
for the oscillatory behavior extending to large |x|  

( 0,xp′ )
q̂

q̂

  (4.19) 
xiexconstp α)sgn(.~

where a is a real constant.  These underwater wave field behaviors and their critical depends on the Mach 

number  and the shear-wave speed C  of the sediment are illustrated by three sets of examples 
shown below in Figs. 31, 32, and 33, assuming an incident N-wave. 

AΜ s

Sediment elastic properties selected 

The sediment boundary wave of interest requires all fields in φ , , and  to remain 
subsonic, i.e. , , and , be all less than unity.  If Μ (U/ ) on the RHS of (4.13b) were too 
small, the system would degenerate to that of the Rayleigh wave.  We shall select for this study the type 
of sediment materials with a shear-wave speed low enough to realize an  under 4.53.  We select from 
the list of sand and mud with (averaged) measured and computed elastic constants, North Pacific 
sediment, on Table 8.2.1 in Clay & Medwin (1977), p. 258: 

1

A

2Φ 2Ψ

1Μ pΜ sΜ s ≡ sC

Μ

  1ρρ    sec)/(mC p sec)/(mCs

I. Very fine sand (continental terrace) 1.91 1711 503 

II. Clay (Abyssal hill) 1.42 1491 195 

  (1.91) (1711) 
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where the C  were computed from data of Young’s moduli and other (measured) elastic constants.  In 
both examples, the sound speed in air and water are taken to be C =331 m/sec and C =1500 m/sec, 
respectively.  To bring out more distinctly the change brought about by the sediment shear-wave speed, 
we use the same density and compressive-wave speed in all examples considered. 

s

a 1

Two cases with supersonic flight Mach number 

With the set of constants assumed for data set I, we have 12 ρρ =1.91, =0.300, =0.263, 

=0.895, =0.954, =0.965, =0.446, and =-1.089.  In addition, the water-layer depth is 
taken to be twice the signature length, i.e. h=2.  The condition (4.13) gives, for this data set, the 
admissible Mach number range for the free mode 

1Μ pΜ

sΜ 1β pβ sβ BWD

 1.35< Μ <1.44 (4.20) A

Two Mach numbers Μ  will be considered, one is within the above range for the free mode, 
=1.36, and the other is outside of it, =1.5.  Overpressure waveform at the sea level for an 

incident N-wave is shown in Fig. 31a where the normalized maximum overpressure is set equal to 0.33.  
The underwater waveform at mid tank (i.e. z=-1) computed for Μ =1.5 from (4.17a,b) is shown in Fig. 
31b.  As expected, no evidence of interaction involving sediment medium can be found.  In fact, the result 
differs little from that of a rigid, flat wall and compares closely with the result for h=1, z=1/2 examined 
earlier in Fig. 30. 

A

AΜ AΜ

A

Next, we examine the results for Μ =1.36 falling in the -range of (4.20) with otherwise the 
same data set.  The overpressure waveforms at the water surface z=-h=-2, at mid tank z=-h/2=-1, and on 
the bottom z=0, are shown in Figs. 32a, 32b, and 32c, respectively.  Unlike the underwater wave field for 
a rigid, inelastic lower wall and for an elastic wall for at =1.5 (Fig. 31b), undiminished sinusoidal 
oscillations at large distances in the form anticipated by (4.19) are seen at both the lower depths levels.  
The oscillation on the floor (z=0) is seen to be twice as strong as that at mid channel (z=-h/2=-1), 
indicating clearly that the disturbances are generated from the multi-media interaction and radiated 
upward from the new acoustic sources on the bottom.  Examples with other Mach number falling within 
the range of (4.20) have also been studied with similar conclusions. 

A AΜ

AΜ

A case with MA<1 

As another example, we employ the modified data set II which has a much lower shear-wave 
speed ( C =195 m/sec), keeping the density and compressive-wave speed same as in set I.  The admissible 

 range for the free mode in this case is  
s

AΜ

 0.524< Μ <0.562 (4.21) A

requiring a subsonic flight.  The calculated results for =0.54 are presented in Figs. 33 a, b, c for a 
relatively thin water layer (shallower channel depth) with h=1.  The overpressure waveforms with 
expected behavior and features under (4.21) are shown in Figs. 33a, 33b, 33c for z=-h=-1, z=-h/2=-1/2, 
and z=0, respectively.  The result in this case is less realistic since there can be no sonic boom at <1 
giving N-waves.  While a different signature form can be used as an input to evaluate the function , the 
model example at hand suffices to indicate the potential of sediment boundary-wave excitation by low 
flying subsonic aircraft over shallow water with low sediment shear-wave speed. 

AΜ

AΜ

P̂
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A noticeable feature common to both mid-tank waveform in Figs. 31b and 32b is the lowering 
amplitudes and shortening oscillation periods in the vicinity of the center, x=0(1); the same feature is not 
found, however, at the floor level (z=0).  This feature supports a finding in Deshanais & Chapman’s 
(1998) model study in that spectrum density in certain higher frequency band appear to increase with 
distance from the sediment interface.  According to the present model, an explanation on a more 
elementary level can be made: the feature in question represents the near-field effect of the surface N-
wave that attenuates and disappears at the bottom but remains detectable at mid channel.  

Also of interest are the comparable values of the C , , and s pC 1ρρ selected for our model study 

that results in resonance in the Μ  range 1.35< Μ <1.44 and the representative values =517 m/sec, 
=1600 m/sec, and 

A A sC

pC 1ρρ =1.8 in Desharais & Chapman’s study.  The estimate of  made for the 
power law in Desharnais & Chapman’s 

sC

 =160(z)  (4.22) sC 3.0

where z is in meter, is taken at z=50m.  The Concord flight Mach number reported in the study was 
estimated at 1.75, equivalent roughly to be ~1.5, being not far from the upper  limit 1.44 of 
(4.20).   

AΜ AΜ

The computational study in Desharnais & Chapman (1998) did not appear to allow a vanishing 
 at z=0 as required by (4.22), since the variable medium properties were modeled by several uniform 

layers.  On the other hand, Godin and Chapman (1999) have obtained an exact solution to the power-law 
shear-speed problem.  The analysis documented in Appendix V below examines several features and 
issues of the power-law model. 

sC

5.  Application to Rocket Space Launch 

Underwater penetration of sonic-boom noise from rocket space launch has been shown by Cheng 
& Lee (1998), using a flat ocean model, to differ significantly from that of aircraft sonic booms not only 
for the much longer sea-level signature length, but in the signature waveform due mainly to the rocket 
plume.  The latter gives rise to underwater field characteristics distinctly different from that anticipated 
for a balanced N wave.  In the following, we examine from the available records the distinct features of 
the sea-level sonic boom waveform produced during the ascent phase of a space launch, and their impact 
on the underwater acoustic field.  Examples will be analyzed with both flat and wavy-surface models. 

5.1 Known and Anticipated Features 
 

Three overpressure waveform representing the more severe sea-level sonic booms recorded 
during a typical space launch ascent are shown in Figs. 34a, b, c.  The overpressure (in psf) shown in Fig. 
34a at the sea level was inferred from data recorded during the ascent of Apollo 17 (Hick et. al. 1973) 
when the launch vehicle reached an altitude of 100,00 ft., where the ambient Mach number was about 
3.55.  The speed of the wave-field movement at the sea level inferred from the calculated wave fronts is 
estimated to be 1,150 ft/sec, which corresponds to a Mach number above water MA = 1.03 and a subsonic 
underwater Mach number Mw = 0.23.  The peak of the sea-level overpressure exceeds 8 psf, while the 
signature length extends over an x-range of  (nearly 2 km). ftL 500,6=′
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Similar sea-level signature waveforms were recorded during the ascent of a Titan IV launch, 
Fig.34b, with a peak overpressure also exceeding 8 psf, and a signature length estimated to be 1 km long.  
Figure 34c reproduced from Hilton & Henderson (1974) gives variants of sea-level overpressure wave 
forms recorded during Apollo 15 launch at different locations from launch site, among which is one with 
U-like double peaks along with the overpressure undershoot, much like the rabbit-ear or U-like feature 
characteristics of the overpressure distributions found near the super-boom/cut-off plane (Haglund 1996). 

With the sea-level signature of Fig. 35a (same as Fig. 33a) as input, the corresponding 
overpressure underwater was computed in Cheng & Lee (1998) for a flat-ocean model to depths down to 
z = 1.5 L’.  The overpressure at z = 1000 ft and z = 5000 ft corresponding 0.156  and 0.776  are 
shown in Fig. 35b and Fig. 35c respectively.  Included also in Fig. 35c is a (negative) source-like 
representation for Sawyer’s solution at large depths (in dashes), signifying the dominance of a sink-like 
behavior resulting from the non-vanishing, negative impulse from the extensive underpressure part of the 
sea-level signature.  The latter has been attributed to the divergence effect of the rocket plume and to the 
ray-focusing effect due to the trajectory curvature and vehicle acceleration.  Similar underwater features 
are expected of most space-launch examples in Figs. 34a, b. c.  The subsequent study on a model utilizing 
the distribution from Titan IV (Fig. 34b) as input confirms the foregoing observations for the flat ocean 
and will reveal several unique physical and analytical properties of the wave field under a wavy surface. 

L′ L′

Simple reasoning would suggest that owing to the large penetration depth made possible by the 
long signature length , the wavy-surface influence could not play a significant role, as it has been with 
the N-waves.  As a significant source of infrasound production, however, this influence cannot be ignored 
as will be made apparent below. 

L′

5.2 Rocket Space Launch: Infrasound under a Wavy Ocean 

As an example of surface wave influence on underwater sonic-boom noise produced during the 
ascent phase of a space launch, we use the Titan IV overpressure waveform in Fig. 34b as input.  The 
similarity in shape of the Titan data with Fig. 34a and Fig. 34c (except for the one with double-spike 
feature), suggests that the horizontal Mach number for this data set must be in a supersonic MA-range 
rather close to one, not fallen in the super boom domain.  In the absence of concrete data on MA, we took 
MA = 1.08 for this numerical study.  Assuming a surface sound speed above water as aA = 331 m/sec, this 
MA-value gives a surface speed for the sonic-boom wave as U = 357 m/sec, hence a signature length 
corresponding to 3 seconds to be .  Note that the precise MmL 10723357 =×=′ A is immaterial for the 
present purpose since the corresponding wave field Mach number underwater is 
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which makes little difference from the values for MA = 1, as long as MA is close enough to one. 

We shall first examine the case with k = 64.  The latter corresponds to 
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.  Consider for the present purpose the wave field directly under 
the flight track ( and a wave train well aligns with the flight track .  The real and imaginary 
parts of the synchronized velocity potential φ  is computed for this case applying the numerical 
procedure developed for general, non-N waveform; the results are shown in Figs. 36a, b.  Its Fourier 
transform, together with the Fourier transform of the boundary-transfer term computed also by a general, 
non-N program, can be used to generate the Fourier transform of the surface overpressure produced by 
wavy surface interaction ; the result is presented in Figs. 36c, d for M
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A = 1.08 and k = 64.  Unlike 
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the case of the N wave, exact, analytic results for is unavailable for accuracy assessment and for 
inferring the behavior of for large k and largeξ .  The graphs in Figs. 36c,d indicate nevertheless 
finite limits for | | as 
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, consistent with the conclusion for the N waveform; a feature distinctly 

differing from the  for the N-wave, however, is the absence of the successive zero-crossings 
prevalent in Figs. 5, 12, and 14-16. 
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The inverse Fourier transform of the product may now be computed to obtain the part 
of the synchronous solution at different depth level z.  Results are presented in Figs 37a, b, c, d 

for depth levels equal to 1/8, 1/4, 1/2 and 1 of the signature length , corresponding to z = 0.125, 0.25, 
0.50 and 1.00, respectively.  Also included for comparison are results by the “far-field” formula computed 
from the product of and an analytic function of 

);( zξσ
),(ˆ 2 zxp

L′

)) z and zx=
125.0

η .  The good agreement of the 
far-field formula with the more exact numerical evaluation at  ought not come as a total 
surprise, since the far-field formula is expected to hold for large 

=z
.zk   With k=64, the product zk is large 

indeed even at z . 

To see how the presence of a surface wave train may affect the underwater overpressure waveform 
in the time domain, one must assign a value to δ  and a realistic scale to the overpressure, for which we 
take  

  =δ

  psfpmax

The latter was adopted in accord with the Titan IV launch record in Fig. 32b.  The results are 
presented in Figs. 38a, b, c, d for four depth levels z=1/8, 1/4, 1/2 and 1, where the overpressure 
waveforms of the Sawyers flat-ocean model (in light dashes), the wavy-surface contribution (dash-
dot curve), and their sum (solid curve) are plotted against time in seconds.  Labeled along the ordinates 
for the overpressure in psf are the corresponding units in  (re 1µPa).  The smooth, sink-like waveform 
from the flat-ocean model reaches down to a (negative) peak as low as at 

1p′ 2p′

dB
psf4.0− 81=z  (0.125km) and 

at  (1km), comparable to those found earlier for the Apollo 17 launch (Cheng & Lee 
1998).  The wavy-surface effects (dash-dot curves) may not seem to contribute noticeably to the 
overpressure magnitude, there is a significant difference from results of the flat-ocean model with regard 
to infrasound production: whereas, the signal durations of 10  seconds of these plots give a frequency 
range of 

psf14.0− z

30−
30

psf

1 for the flat-ocean model, the wavy-surface interaction generates a wave-packet 
with frequency in the range of (estimated by counting peaks) and a peak sound pressure well 
above 0 or 120 (re 1 .  To be sure, at the deepest level , the frequency is in the range 
of with the wave-packet overpressure 114 (re 1 .  Accordingly, these infrasound 
signals at depth level 

−
Hz53 −

)Pa02.
Hz65 −

µ 1=z
)dB Paµ

1  km underwater have durations 20-30 seconds, depending on the chosen cut-
off amplitude. Noteworthy is the frequency downshift characteristics, which is typically 3  
downshifting to 1  for depth level 

Hz4−
41−81 , and downshifting to 3  at the larger depth 

levels 
Hz5 Hz

1−21  km.  Even though the peaks of the wavelets are relatively small, the wave-surface effect 
does add markedly to the total overpressure.  All results shown can be closely reproduced by the semi-
analytic procedures based on the far-field formula described earlier, including the smallest depth level 
z=1/8. 
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To see how a reduction in the surface-wave number k may affect the underwater signal waveform 
and intensity, we examine the case of , with M16=k A, and other parameters unchanged.  The results for 

are presented in Figs. 39a, b, c, d through 41a, b, c, d in an order corresponding to results presented 
earlier for k .  Of the time-domain overpressure waveforms in Figs. 41a, b, c, d, a common feature 
noticeably different from those in Figs. 38a, b, c, d for the higher k is the lower carrier-wave (wavelet) 
frequency of the wave packet (cf. dash-dot curves); this is made evidenced by the increased spacing 
between the neighboring wavelets, expected as a result of the four-fold reduction in k. 

δ
16=k

64=

A more significant property upon examining closely these two data sets is, however, a significant 
departure from the cylindrical spreading rule zk1  established for high zk  studies of N-waves and 
similar waveforms (Appendix IV).  The peak 2p′  from the foregoing calculations for the space launch 
reveals, instead, a slight reduction from that for .  Owing to the importance of this issue, a 
computer program re-run was made for the case of with the ξ range extending much further 
to ; the results change little however from those of the earlier runs.   

64=k
=k 64 −

300300 <<− ξ

To see more clearly the reason for this departure and the significant difference in the wavy-
surface effect between a rocket space launch sonic boom and the carpet booms from a supersonic aircraft, 
one may reexamine the integral solution (3.14) that can be recast for a given Mach number MA and large 
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where 
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For cases with N-waves, as well as waveform made of step functions and polynomials of x, 
 is independent of k in the limit  [cf. (IV.3 in Appendix IV)] and  is clearly a function 

of 
( kAk ;ˆ ξ ∞→k 2p̂
( )zk , according to (5.1) and its further simplification that yields the cylindrical spreading rule 
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where ∗ξ  is a function of η  alone.  In the more general case, the far field formula for high zk  
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still holds, as it has been substantiated by the foregoing examples for a fixed k.  However, the computed 
results shows in Figs. 35-37 indicate that | | may no longer reduce with large k simply as the reciprocal 
of k for those sea-level waveforms shown in Figs. 34a, b, c; therefore the inverse 

Â
zk  rule for  may 

not apply in these cases involving large and different k’ s. 
2p̂

The foregoing examinations and comparisons have not only brought out several distinct 
underwater wave field feature unique to the rocket space launch, but also the importance of the function 

; its analytical structure and its relations to physical nature of the wave field deserve more 
thorough investigation in future work. 

( kA ;ˆ ξ )

                                                          

6. Concluding Remarks 

The work in Part I is extended and applied to calculations for model examples of sonic boom 
noise penetration into wavy and non-wavy (flat) oceans, and to studying the sea-floor influence and the 
sediment-boundary wave excitation.  The numerical study of concrete examples substantiates that, due to 
the much lower attenuation rate (cylindrical spreading), the time-dependent disturbances produced by the 
interaction of incident sonic boom waves with a sinusoidal surface-wave train can overwhelm the 
otherwise flat-ocean (Sawyers) wave field at depth levels much larger than, as well as comparable to the 
signature length L΄, depending on the flight Mach number , the wave number k, the alignment angle 
ψ, and the max. slope δ of the surface-wave train.  Calculations for supersonic aircraft, including cases 
with nonaligned as well as multiple wave trains, indicate that, under sea states corresponding to moderate 
and fresh breezes, disturbances at levels of 120-130 dB (re 1  can reach a depth level of 300-450m 
where the sonic boom noise will be perceived as a wave-packet with carrier-wave frequency in the 10-40 
Hz range, which is commonly characterized by a frequency downshift.  Same dB levels are found at 
comparable depth level (200-400m) in examples of rocket space-launch ascent, but mainly in the low 
infrasound frequency (1-10 Hz) range.  Significant differences in underwater noise characteristics 
between sonic booms from supersonic aircrafts and that during a space-launch ascent operation, result 
primarily from the presence of the rocket plume through its effect on the acoustic exposure spectral 
density . 

AM

µ )Pa

( )∗ξÂ

One noticeable feature of sonic boom noise in deep water is the relatively long transit time that 
may expose the reception to a higher ambient noise level.  The length of this duration will depend on the 
threshold sound-pressure level chosen.  Using the threshold value of 100 dB (re 1  for the present 
purpose, the ambient noise would appear in a sound-pressure level no higher than 87 dB (re 1  for 
the aircraft example and 95 dB (re 1  for the case of a rocket space launch, and is not expected to 
mask the sonic boom signal underwater of interest at 100 dB (re 1  and higher.

)Paµ
)Paµ

)Paµ
)Paµ 13 

The bottom effect is found to little affect Sawyers’ prediction even in shallow water at depth 
levels as small as a half of the signature length, except in the immediate vicinity of the sea floor where 
significant increase in peak overpressure can be found.  Depending on the elastic properties of the 
seafloor, the examples studied substantiate that sediment-boundary waves can be excited by supersonic 
overflight, and is detectable in shallow water. 

 
13 The estimates were based on the max. average vessel traffic noise of 80 dB (re 1  [Wenz 1962, Urick 1983] for 
deep and shallow water. 

)Paµ
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As is the theory in Part I, various parts of the computer codes have been up-dated for a general 
program, not restricted to the special case of an incident N-wave, based on the improved version, in which 
several anomalies (and non-uniformities associated with the solution discontinuities) in the earlier version 
of the theory have been removed.  Critical tests have shown that the general numerical program is highly 
accurate.  The far-field analysis for the case of incident N-wave has been extended to allow application of 
high surface-wave number k, which becomes extremely effective for predictions applied to problems of 
rocket space launch, and proves to be vital in the further extension of the interaction theory to non-
sinusoidal, periodic surface-wave trains. 

A resolved issue may be noted in passing; it concerns the magnitude of the water surface 
depression under loading from the sonic boom overpressure, not considered in this and other theories.  In 
resolving the issue, an explicit solution for the surface depression under an N-wave was obtained (not 
reproduced here); applications with realistic max. overpressure and pulse transit time under field as well 
as laboratory conditions confirmed that the amount of surface depression in question is far below that of 
the surface-wave train, at least by an order of  10- 4 . 

Several investigations on the wavy-surface effect that remain to be completed are apparent from 
the discussions presented above and are noted below. 

I. Need for wider parametric and type coverage; graphics and audio 

Space-Launch Examples—Available recorded/computed sea-level sonic boom signatures 
pertinent to modern space-launch operation needs must be included in a more extensive 
wave-field study. 

Wider Parameter Coverage—Ranges of Mach number, surface wave number, wave height, wave-
train alignment angle, etc. should be enlarged to allow more realistic representations; an 
analytical development for high surface- wave-number is included. 

Graphic and Audible—Static and cinematic contour plots illustrating wave-field penetration 
depth and time sequence are needed to reach a wider audience and aid insight; audio play-
back in synch with computed wave packet in transit is also expected to help in this respect. 

II. Marine mammal response to audio playback 

Underwater Experiments with Marine Mammals—Over-pressure signals computed from theory 
for deep water is broad-cast and directed to a marine mammal species (preferably not too far 
from the surface, when the sea is relatively calm) in close range, in an audio play-back 
experiment under water to observed/record the animal’s response to the predicted deep-water 
sound.  The project is to be carried out jointly with marine biologists and may reduce 
substantially the resource for supporting full-scale flight and space-launch operations 

III. Shallow-water response to sonic booms 

Non-Wavy Shallow Water—Large parameter domain of a flat, shallow ocean, including the limit 
of a vanishing depth, must be explored and ascertained.  The work will be a joint theoretical 
and experimental effort.  

Wavy Shallow Water—Response to sonic boom in this case has not been analyzed thus far; 
laboratory investigation is expected to precede theory in this study.  

Sediment Boundary Wave Excitation—Studies will include greater varieties in elastic properties 
and in shear-wave speed distribution, including the singular problem of a vanishing shear-
wave speed at the sediment interface; the study will be made jointly with seismic-
acousticians; laboratory study in limited scope will be considered.  
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Near-Surface Wave Field of a Wavy Ocean—The results, not thoroughly delineated thus far, may 
impact significantly the study of potential physiological harm to a broader animal group, 
including dolphins and seals.  

IV. Non-uniform surface wave train and other laboratory issues 

Attenuation and Compactness (Finite Length) of Surface Wave Train—In response to the 
capillary wave decay observed in the laboratory measurement, a new theory is being 
developed to address non-uniformity in surface wave train due to attenuation and other shape 
changes; the analysis multi-scale and Laplace transform technique.  Test of theory will be 
provided by comparison with underwater measurement for laboratory-generated compact 
wave train.. 
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Captions of Figures 

Fig. 1 Schematic representation of the interaction problem, showing variables and quantities used in 
the analysis 

 
Fig. 2 Sketch illustrating the sonic boom impact zone in the horizontal reference plane, with 

surface-wave crests represented by thin solid lines.  The two sets of coordinates (x, y) and (x΄, 
y΄) are fixed to the moving frame, with Λ and ψ identified with the local swept angle of the 
surface impact zone and the non-alignment angle of the surface-wave vector, respectively. 

 
Fig. 3 The boundaries in the Λ-ψ realm enclosing the cylindrical-spreading domains for four surface 

Mach numbers = 1.05, 1.5, 2.0, and 3.0, in which the surface-wave interaction effects 
attenuates according to the inverse square-root rule.  

AM

 
Fig. 4a Semi-analytical and asymptotic results of real and imaginary parts of the surface-velocity 

potential φ pertaining to the synchronous solution above water for an incident N-wave at 
surface Mach number = 1.821 and surface-wave number k=4. AM

 
Fig. 4b Semi-analytical integrated results of real and imaginary parts of the normalized contribution 

to the synchronous surface pressure (x΄, 0) for N-wave at = 1.821, k=4. 2p̂ AM
 
Fig. 5 Real and imaginary parts of the Fourier transform of (x΄, 0) for N-wave with = 1.821, 

k=4 and their comparison with the exact analytic results. 
2p̂ AM

 
Fig. 6 Real and imaginary parts of the synchronous surface pressure (x΄, ) for N-wave with 

= 1.821, k=4 at depth level equal to one half signature length z=0.5. 
2p̂ z

AM
 
Fig. 7 The (x΄, z) at depth level equal to two and a half signature length z=2.5, with conditions 

otherwise same as in the preceding figure. 
2p̂

 
Fig. 8 Time-domain waveforms of overpressure at the reference surface z=0 produced by an 

incident N-wave at = 1.821, k=4 computed from the flat surface (in dashes), from the 
surface-wave interaction effect (dash-dot curve), and from the sum of the two (solid curve). 

AM

 
Fig. 9  Time-domain waveforms of overpressure at depth level equal to one half signature length 

z=0.5, with conditions otherwise same as in preceding figure. 
 
Fig. 10 Time-domain waveforms of overpressure at depth level two and a half signature length z=2.5, 

with conditions otherwise same as in preceding figure. 
 
Fig. 11 Real and imaginary parts of surface φ for N-wave at = 1.5, k=4 computed from the semi-

analytical method (developed for N-wave) and from the general numerical program 
applicable to non-N-waves.  [The comparisons in this and the three following sets serve as a 
critical test of the more general program]. 

AM
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Fig. 12a Real and imaginary parts of the Fourier transform of the (x΄, 0) correction for transferring 
the boundary from z= (x΄, 0) to the reference surface z=0 for N-wave with = 1.5 and 
k=4. 

2p̂
WZ AM

 
Fig. 12b Real and imaginary parts of the Fourier transform of (x΄, 0) for N-wave with = 1.5, 

k=4. 
2p̂ AM

 
Fig. 13 Real and imaginary parts of (x΄, ) at depth level two and a half signature length z=2.5 

for N-wave with = 1.5, k=4. 
2p̂ z

AM
 
Fig. 14a Real and imaginary parts of the Fourier transform of (x΄, 0) from numerical calculations 

and its comparison with the exact analytical results for N-wave with = 1.5 and k=4. 
2p̂
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Fig. 14b Fourier transform of (x΄, 0) from numerical calculation and comparison with exact 

analytical results for N-wave with = 1.5 and k=16. 
2p̂
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Fig. 15 Fourier transform of (x΄, 0) from numerical calculation and comparison with exact 

analytical results for N-wave with = 1.88 and k=16. 
2p̂
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Fig. 16 Fourier transform of (x΄, 0) from numerical calculation and comparison with exact 

analytical results for N-wave with = 2.38 and k=16. 
2p̂
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Fig. 17a Example of underwater overpressure waveform produced by N-wave with =1.5, surface-

wave number k=4, maximum wave slope δ=0.025, sea-level signature length L΄=300ft., and 
max. sea-level overpressure 2 psf, at two depth levels: z΄L΄=150ft and z΄L΄=1500ft. 

AM

 
Fig. 17b Example of underwater overpressure waveform with = 1.5, k=16 at two depth levels, 

with conditions otherwise same as in the preceding figure. 
AM

 
Fig. 18 Example of underwater overpressure waveform with = 1.88, k=16 at two depth levels, 

with conditions otherwise same as in the preceding figure. 
AM

 
Fig. 19 Example of underwater overpressure waveform with = 2.38, k=16 at two depth levels, 

with conditions otherwise same as in the preceding figure. 
AM

 
Fig. 20 Example of N-wave interacting with surface-wave train for = 2.38, k=16 at different non-

alignment angles ψ and at different span-station swept angle Λ: real and imaginary parts of 
surface velocity potential φ as functions of x΄ for combinations (Λ, ψ)=(0, 0), (-15°, 0), (0, 
15°), and (-15°, 15°). 

AM

 
Fig. 21 Example of N-wave interacting with surface-wave train at different non-alignment angles ψ 

and swept angle Λ: real and imaginary parts of the Fourier transform of (x΄, 0); conditions 
otherwise same as in preceding figure. 

2p̂
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Fig. 22 Example of N-wave interacting with surface-wave train at different ψ and Λ: real and 
imaginary parts of the synchronous overpressure (x΄, z) at the depth level z=2.5; 
conditions otherwise same as in preceding figure. 

2p̂

 
Fig. 23 Test of far-field formula for (x΄, ) at span-station removed from the flight track at depth 

level z=2.5 for the case of Λ=-15°, ψ=0 for = 2.38 and k=16. 
2p̂ z
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Fig. 24 Example of N-wave interacting with surface-wave train at different ψ and Λ angles: real and 

imaginary parts of φ as functions of x΄ for (Λ, ψ)=(0, 0), (0, 30°), and (-30°, 30°); conditions 
otherwise same as in Figs. 20 thru 22. 

 
Fig. 25 Example of N-wave interacting with surface-wave train at different ψ and Λ angles: real and 

imaginary parts of Fourier transform of (x΄, 0); conditions otherwise same as in Fig. 24. 2p̂
 
Fig. 26 Example of N-wave interacting with surface-wave train at different ψ and Λ angles: real and 

imaginary parts of the synchronous overpressure (x΄, ) at depth level z=2.5; conditions 
otherwise same as in Figs. 24 and 25. 

2p̂ z

 
Fig. 26x.a Example of N-wave interacting with surface-wave train: overpressure time-domain waveform 

with = 2.38, k=16, δ=0.025, at depth levels z=2.5, for Λ=0, ψ=0. AM
 
Fig. 26x.b Overpressure time-domain waveform at z=2.5, for Λ=0, ψ=30°; conditions otherwise same as 

in preceding figure.  
 
Fig. 26x.c Overpressure time-domain waveform at z=2.5, for Λ=-30°, ψ=30°; conditions otherwise same 

as preceding figure. 
 
Fig. 27a Surface-wave ordinate (depression) as function of time resulting from superposition of two 

aligned surface-wave trains with slightly different wave numbers, k=3.8, 4. 
 
Fig. 27b Overpressure time-domain waveform at depth level z=5 produced by a N-wave of max p΄=2 

psf and L΄=300ft. interacting with a single well aligned wave train (Λ=ψ=0), with δ=0.025, 
for k=4. 

 
Fig. 27c Overpressure time-domain waveform at depth level z=5, for k=3.8; conditions otherwise same 

as in preceding figure. 
 
Fig. 27d Overpressure time-domain waveform at depth level z=5 (1,500ft.) produced by N-wave of 

max peak overpressure 2 psf and L΄=300ft. interacting simultaneously with two aligned wave 
trains (Λ=ψ=0), of δ=0.025, one with k=3.8 and the other with k=4.0. 

 
Fig. 28a Example of sonic boom interacting with a “cross sea” (multiple wave trains with different 

non-alignment angles): overpressure time-domain waveform at depth level z=2.5 in the 
presence of two wave trains (Λ, ψ)=(0, 0) and (Λ, ψ)=(0, 30°); conditions otherwise same as 
in Figs. 16x.a and 16x.b. 

 
Fig. 28b Example of sonic boom interacting with a “cross sea”: overpressure time-domain waveform 

at depth level z=2.5 in the presence of two wave trains (Λ, ψ)=(0, 30°) and (Λ, ψ)=(0, -30°). 
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Fig. 29 Comparison of the sinusoidal and the Stokesian waves for different slope parameters 

δ=0.025, 0.05, and 0.10, at the same surface-wave number k=4. 
 
Fig. 30 Example illustrating sea-floor influence on underwater overpressure waveform produced by 

an N-wave incident upon a flat interface.  In this examination, the depth level z (distance 
from the interface) is z=0.5 (one half of the signature length L΄), while the channel depth ratio 
takes on several values 5.0=′Lh thru ∝. 

 
Fig. 31 Example of sonic boom disturbance penetrating into shallow water in which sediment 

boundary wave is not excited.  The normalized max. overpressure is 0.33 and the channel 
depth ratio is ;0.2=′Lh

AM

 the density and sound speeds of water and sediment material are 
listed with the figure.  For this set of properties, sediment-boundary wave cannot be excited 
unless 1.33< <1.44.  The waveform shown for the mid channel for =1.5 indicates no 
sign of resonance, as expected.  (a) overpressure on water surface, (b) overpressure at mid 
channel z=-1. 

AM

 
Fig. 32 Example of sonic boom disturbance penetrating into shallow water in which sediment 

boundary wave is excited.  Conditions same as in preceding figure except =1.36, fallen 
within the resonance range 1.33< <1.44.  (a) overpressure on water surface, (b) 
overpressure at mid channel, and (c) overpressure on sea floor. 

AM
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Fig. 33 Example of sediment boundary wave in shallow water excited by a traveling disturbance at 

subsonic speed.  The set of density and sound speed properties shown with the figure differs 
from that in the preceding figure mainly in shear-wave speed C , being 195 m/sec. instead of 
503 m/sec.  For this set, the resonance condition is 0.521< <0.562.  A highly idealized N-
waveform is assumed on the water surface for simplicity.  The example shown for =0.54 
indicates sediment wave excitation, as expected. 
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Fig.34 Representative sonic booms recorded at sea level during the earliest phase of rocket space 

launch: (a) Apollo 17 Ascent, (b) Titan IV Ascent, (c) Apollo 15 Ascent. 
 
Fig. 35 Overpressure waveform at three depth levels according to the flat-ocean (Sawyers) model 

based on the sea-level overpressure signature from the Apollo 17 ascent record: (a) sea level, 
(b) z=0.156 (1,000ft.), and (c) z=0.776 (5,000ft.).  

 
Fig. 36a Example of sonic boom from rocket space launch interacting with a well aligned surface-

wave train (Λ=ψ=0) assuming =1.08, k=64, L΄=1 km and a sea-level overpressure same 
as one recorded for Titan IV launch [Fig. 34(b)]: real and imaginary parts of surface velocity 
potential φ of the synchronous solution. 

AM

 
Fig. 36b Real and imaginary parts of the Fourier transform of the synchronous surface pressure,  

conditions same as in the preceding figure. 
( );ˆ ξA

 
Fig. 37a Real and imaginary parts of the normalized synchronous overpressure (x΄, ) at depth 

level z=
2p̂ z

125.08 =1 and comparison with prediction by (semi-analytic) high-k, far-field 
formula; conditions same as in the preceding figure.  
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Fig. 37b Real and imaginary parts of (x΄, ) at depth level z=2p̂ z 25.04 =1 and comparison with 

results from the high-k, far-field formula; conditions otherwise same as in the preceding 
figure. 

 
Fig. 37c Real and imaginary parts of (x΄, ) at depth level 2p̂ z 5.021 ==z  and comparison with 

results from high-k, far-field formula; conditions otherwise same as in the preceding figure.   
 
Fig. 37d Real and imaginary parts of (x΄, ) at depth level z=1 and comparison with results from 

high=k, far-field formula; conditions otherwise same as in the preceding figure. 
2p̂ z

 
Fig. 38a Predicted overpressure time-domain waveform at depth level z=1/8, assuming max. surface-

wave slope δ=0.025; conditions otherwise same as in Fig. 37a. 
 
Fig. 38b Predicted overpressure time-domain waveform at depth level z=1/4, assuming δ=0.025; 

conditions otherwise same as in Fig. 37b. 
 
Fig. 38c Predicted overpressure time-domain waveform at depth level z=1/2, assuming δ=0.025; 

conditions otherwise same as in Fig. 37c. 
 
Fig. 38d Predicted overpressure time-domain waveform at depth level z=1.0, assuming δ=0.025; 

conditions otherwise same as in Fig. 37d. 
 
Fig. 39a Example of sonic boom from rocket space launch interacting with a well aligned surface-

wave train (Λ=ψ=0) assuming k=16; conditions otherwise same as in Fig. 36a: real and 
imaginary parts of φ. 

 
Fig. 39b Real and imaginary parts of  conditions same as in the preceding figure. ( );ˆ ξA
 
Fig. 40a Real and imaginary parts of (x΄, ) at depth level z=1/8 and comparison with high=k, far-

field prediction; conditions otherwise same as in the preceding figure. 
2p̂ z

 
Fig. 40b Real and imaginary parts of (x΄, ) at depth level z=1/4 and comparison with high-k, far-

field prediction; conditions otherwise same as in the preceding figure. 
2p̂ z

 
Fig. 40c Real and imaginary parts of (x΄, ) at depth level z=1/2 and comparison with high-k, far-

field prediction; condition otherwise same as in the preceding figure. 
2p̂ z

 
Fig. 40d Real and imaginary parts of (x΄, ) at depth level z=1 and comparison with high-k, far-

field prediction; conditions otherwise same as in the preceding figure. 
2p̂ z

 
Fig. 41a Predicted overpressure time-domain waveform at depth level z=1/8, for δ=0.025; conditions 

same as in Fig. 40a. 
 
Fig. 41b Predicted overpressure time-domain waveform at depth level z=1/4, for δ=0.025; conditions 

same as in Fig. 40b. 
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Fig. 41c Predicted overpressure time-domain waveform at depth level z=1/2, for δ=0.025; conditions 
same as in Fig. 40c. 

 
Fig. 41d Predicted overpressure time-domain waveform at depth level z=1, for δ=0.025; conditions 

same as in Fig. 40d. 
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